精英家教网 > 高中数学 > 题目详情

【题目】如图抛物线的焦点为为抛物线上一点(轴上方),点到轴的距离为4.

1)求抛物线方程及点的坐标;

2)是否存在轴上的一个点,过点有两条直线,满足交抛物线两点.与抛物线相切于点不为坐标原点),有成立,若存在,求出点的坐标.若不存在,请说明理由.

【答案】1 2)存在点.

【解析】

1)由抛物线的定义,可得,且,求得,即可得到抛物线的方程,进而得到A点的坐标;

2)设的方程为,联立方程组,由,解得

得到,再由的方程为,联立方程组,求得,结合,即可得到结论.

1)由抛物线的焦点为,满足点到轴的距离为4,由抛物线的定义,可得,且,解得

所以抛物线的方程为

,解得

又由轴上方,所以,即.

2)假设存在点M,可知直线的斜率存在,

的方程为

联立方程组,整理得

,解得

此时切点,可得

因为,所以的方程为

联立,整理得

所以

可得,,解得

所以存在点,符合题意.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着经济全球化信息化的发展,企业之间的竞争从资源的争夺转向人才的竞争.吸引留住培养和用好人才成为人力资源管理的战略目标和紧迫任务.在此背景下,某信息网站在15个城市中对刚毕业的大学生的月平均收入薪资和月平均期望薪资做了调查,数据如下图所示.

(1)若某大学毕业生从这15座城市中随机选择一座城市就业,求该生选中月平均收入薪资高于8500元的城市的概率;

(2)若从月平均收入薪资与月平均期望薪资之差高于1000元的城市中随机选择2座城市,求这2座城市的月平均期望薪资都低于8500元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某几何体的三视图如图所示,网格纸上的小正方形边长为1,则此几何体的外接球的表面积为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某车间生产甲、乙两种产品,已知制造一件甲产品需要种元件5个,种元件2个,制造一件乙种产品需要种元件3个,种元件3个,现在只有种元件180个,种元件135个,每件甲产品可获利润20元,每件乙产品可获利润15元,试问在这种条件下,应如何安排生产计划才能得到最大利润?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,平面边上一点,.

(1)证明:平面平面.

(2)若,试问:是否与平面平行?若平行,求三棱锥的体积;若不平行,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱中,底面是矩形,交于点.

(1)证明:平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以为极点,轴的正半轴为极轴建立的极坐标系中,直线的极坐标方程为,曲线的参数方程为为参数).

1)写出直线及曲线的直角坐标方程;

2)过点且平行于直线的直线与曲线交于两点,若,求点的轨迹及其直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某教师调查了名高三学生购买的数学课外辅导书的数量,将统计数据制成如下表格:

男生

女生

总计

购买数学课外辅导书超过

购买数学课外辅导书不超过

总计

(Ⅰ)根据表格中的数据,是否有的把握认为购买数学课外辅导书的数量与性别相关;

(Ⅱ)从购买数学课外辅导书不超过本的学生中,按照性别分层抽样抽取人,再从这人中随机抽取人询问购买原因,求恰有名男生被抽到的概率.

附: .

查看答案和解析>>

同步练习册答案