精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=eax﹣x. (Ⅰ)若曲线y=f(x)在(0,f(0))处的切线l与直线x+2y+3=0垂直,求a的值;
(Ⅱ)当a≠1时,求证:存在实数x0使f(x0)<1.

【答案】(Ⅰ)解:f'(x)=aeax﹣1,

∵曲线y=f(x)在(0,f(0))处的切线与直线x+2y+3=0垂直,

∴切线l的斜率为2,

∴f'(0)=a﹣1=2,

∴a=3;

(Ⅱ)证明:当a≤0时,显然有f(1)<ea﹣1≤0<1,即存在实数x0使f(x0)<1;

当a>0,a≠1时,由f'(x)=0可得

∴在 时,f'(x)<0,∴函数f(x)在 上递减;

时,f'(x)>0,∴函数f(x)在 上递增.

= 是f(x)的极小值.

,则 ,令g'(x)=0,得x=1.

x

(0,1)

1

(1,+∞)

g'(x)

+

0

g(x)

极大值

∴当x≠1时g(x)<g(1)=1,

综上,若a≠1,存在实数x0使f(x0)<1


【解析】(Ⅰ)求出原函数的导函数,结合曲线y=f(x)在(0,f(0))处的切线l与直线x+2y+3=0垂直,求a的值;(Ⅱ)当a≤0时,有f(1)<ea﹣1≤0<1,即存在实数x0使f(x0)<1;当a>0,a≠1时,求出导函数的零点,由导函数的零点对定义域分段,由单调性求出函数的极小值,再由导数求出极小值的最大值得答案.
【考点精析】关于本题考查的函数的最大(小)值与导数,需要了解求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 . (Ⅰ)求f(x)的定义域;
(Ⅱ)设β是锐角,且 ,求β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:函数f(x)=(m2﹣1) 上为增函数;命题q:函数g(x)=x2﹣2elnx﹣m有零点.
(I)若p∨q为假命题,求实数m的取值范围;
(Ⅱ)若p∨q为真命题,p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要想得到函数 的图象,只需将函数y=sinx的图象上所有的点( )
A.先向右平移 个单位长度,再将横坐标伸长为原来的2倍,纵坐标不变
B.先向右平移 个单位长度,横坐标缩短为原来的 倍,纵坐标不变
C.横坐标缩短为原来的 倍,纵坐标不变,再向右平移 个单位长度
D.横坐标变伸长原来的2倍,纵坐标不变,再向右平移 个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两个半径不等的圆盘叠放在一起(有一轴穿过它们的圆心),两圆盘上分别有互相垂直的两条直径将其分为四个区域,小圆盘上所写的实数分别记为x1 , x2 , x3 , x4 , 大圆盘上所写的实数分别记为y1 , y2 , y3 , y4 , 如图所示.将小圆盘逆时针旋转i(i=1,2,3,4)次,每次转动90° , 记Ti(i=1,2,3,4)为转动i次后各区域内两数乘积之和,例如T1=x1y2+x2y3+x3y4+x4y1 . 若x1+x2+x3+x4<0,y1+y2+y3+y4<0,则以下结论正确的是(
A.T1 , T2 , T3 , T4中至少有一个为正数
B.T1 , T2 , T3 , T4中至少有一个为负数
C.T1 , T2 , T3 , T4中至多有一个为正数
D.T1 , T2 , T3 , T4中至多有一个为负数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}的公比q=2,前3项和是7,等差数列{bn}满足b1=3,2b2=a2+a4 . (Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)求数列 的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx﹣ )(ω>0)的图象与x轴的相邻两个交点的距离为
(1)求w的值;
(2)设函数g(x)=f(x)+2cos2x﹣1,求g(x)在区间 上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正方形ABCD和矩形ACEF所在平面相互垂直,AB= ,AF=1,G为线段AD上的任意一点.
(1)若M是线段EF的中点,证明:平面AMG⊥平面BDF;
(2)若N为线段EF上任意一点,设直线AN与平面ABF,平面BDF所成角分别是α,β,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程: (t为参数),曲线C的参数方程: (α为参数),且直线交曲线C于A,B两点.
(Ⅰ)将曲线C的参数方程化为普通方程,并求θ= 时,|AB|的长度;
(Ⅱ)已知点P:(1,0),求当直线倾斜角θ变化时,|PA||PB|的范围.

查看答案和解析>>

同步练习册答案