精英家教网 > 高中数学 > 题目详情

【题目】如图,在斜三棱柱中,平面平面,均为正三角形,EAB的中点.

1)证明:平面

2)求直线与平面所成角的正弦值.

【答案】1)证明见解析(2

【解析】

(1)如图,连接,交于点M,连接ME,则,再利用线面平行的判定定理,即可证明线面平行;

2)设OAC的中点,连接OB,分别以射线OBOA的方向为xyz轴的正方向,建立空间直角坐标系,求出平面的一个法向量为,设直线与平面所成的角为,代入公式运算,即可得答案.

1)如图,连接,交于点M,连接ME,则.

因为平面平面,所以平面.

2)设OAC的中点,连接OB.因为为正三角形,

所以,又平面平面,平面平面

所以平面ABC.由已知得.

如图,分别以射线OBOA的方向为xyz轴的正方向,建立空间直角坐标系,则有

设平面的一个法向量为,则

所以,则.

设直线与平面所成的角为

故直线与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,一隧道内设双行线公路,其截面由一个长方形和抛物线构成.为保证安全,要求行使车辆顶部(设为平顶)与隧道顶部在竖直方向上的高度之差至少要有0.5米.若行车道总宽度AB为6米,则车辆通过隧道的限制高度是______米(精确到0.1米)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的左、右焦点分别为,圆与双曲线在第一象限内的交点为M,若.则该双曲线的离心率为

A. 2B. 3C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,集合满足.

①每个集合都恰有5个元素

集合中元素的最大值与最小值之和称为集合的特征数,记为,则 的值不可能为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国家统计局服务业调查中心和中国物流与采购联合会发布的201810月份至20199月份共12个月的中国制造业采购经理指数(PMI)如下图所示.则下列结论中错误的是(

A.12个月的PMI值不低于50%的频率为

B.12个月的PMI值的平均值低于50%

C.12个月的PMI值的众数为49.4%

D.12个月的PMI值的中位数为50.3%

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的函数,满足.

1)证明:2是函数的周期;

2)当时,,求时的解析式,并写出)时的解析式;

3)对于(2)中的函数,若关于x的方程恰好有20个解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《算法统宗》全称《新编直指算法统宗》,是屮国古代数学名著,程大位著.书中有如下问题:“今有五人均银四十两,甲得十两四钱,戊得五两六钱.问:次第均之,乙丙丁各该若干?”意思是:有5人分40两银子,甲分104钱,戊分56钱,且相邻两项差相等,则乙丙丁各分几两几钱?(注:1两等于10钱)(

A.乙分8两,丙分8两,丁分8B.乙分82钱,丙分8两,丁分78

C.乙分92钱,丙分8两,丁分68D.乙分9两,丙分8两,丁分7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜过去50周的资料显示,该地周光照量(小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量(百斤)与使用某种液体肥料(千克)之间对应数据为如图所示的折线图

(1)依据数据的折线图,是否可用线性回归模型拟合的关系?请计算相关系数并加以说明(精确到0.01).(,则线性相关程度很高,可用线性回归模型拟合)

(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量限制,并有如下关系:

周光照量(单位:小时)

光照控制仪最多可运行台数

3

2

1

若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元若商家安装了3台光照控制仪,求商家在过去50周周总利润的平均值.

附:相关系数公式,参考数据

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧面,已知,点E是棱的中点.

1)求证:平面ABC

2)在棱CA上是否存在一点M,使得EM与平面所成角的正弦值为,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案