【题目】已知抛物线的焦点为F,A为C上异于原点的任意一点,过点A的直线交y轴正半轴于点B,且有,当点A的纵坐标为6时,为正三角形.
(1)求C的方程;
(2)若直线,且和C有且只有一个公共点D,证明:直线AD过定点,并求出该定点坐标.
【答案】(1);(2)证明见解析,
【解析】
(1)根据抛物线的焦半径公式,结合等边三角形的性质,求出的值;
(2)设出点的坐标,求出直线的方程,利用直线,且和有且只有一个公共点,求出点的坐标,写出直线的方程,将方程化为点斜式,可求出定点.
(1)
可得其焦点为:,
设,则FB的中点为,
,由抛物线的定义知,
解得或(舍去)
由,解得,
C的方程为:.
(2)由(1)知.设,,,,
,
则,
由得,故,
可得直线l的斜率.
设,
由题知为C在D处的切线,D点坐标满足:,,
由导数的几何意义知的斜率,
故,,(此处也可设的方程,与抛物线方程联立方程组,然后由得到D点坐标).
,
故直线AD的方程为:.
由,得,
直线AD过定点.
科目:高中数学 来源: 题型:
【题目】某工厂的,,三个不同车间生产同一产品的数量(单位:件)如下表所示.质检人员用分层抽样的方法从这些产品中共抽取6件样品进行检测:
车间 | |||
数量 | 50 | 150 | 100 |
(1)求这6件样品中来自,,各车间产品的数量;
(2)若在这6件样品中随机抽取2件进行进一步检测,求这2件产品来自相同车间的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C的中心在坐标原点,焦点在x轴上,它的一个顶点恰好是抛物线的焦点,离心率为.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,若,,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着食品安全问题逐渐引起人们的重视,有机、健康的高端绿色蔬菜越来越受到消费者的欢迎,同时生产—运输—销售一体化的直销供应模式,不仅减少了成本,而且减去了蔬菜的二次污染等问题.
(1)在有机蔬菜的种植过程中,有机肥料使用是必不可少的.根据统计某种有机蔬菜的产量与有机肥料的用量有关系,每个有机蔬菜大棚产量的增加量(百斤)与使用堆沤肥料(千克)之间对应数据如下表
使用堆沤肥料(千克) | 2 | 4 | 5 | 6 | 8 |
产量的增加量(百斤) | 3 | 4 | 4 | 4 | 5 |
依据表中的数据,用最小二乘法求出关于的线性回归方程;并根据所求线性回归方程,估计如果每个有机蔬菜大棚使用堆沤肥料10千克,则每个有机蔬菜大棚产量增加量是多少百斤?
(2)某大棚蔬菜种植基地将采摘的有机蔬菜以每份三斤称重并保鲜分装,以每份10元的价格销售到生鲜超市.“乐购”生鲜超市以每份15元的价格卖给顾客,如果当天前8小时卖不完,则超市通过促销以每份5元的价格卖给顾客(根据经验,当天能够把剩余的有机蔬菜都低价处理完毕,且处理完毕后,当天不再进货).该生鲜超市统计了100天有机蔬菜在每天的前8小时内的销售量(单位:份),制成如下表格(注:,且);
前8小时内的销售量(单位:份) | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
频数 | 10 | x | 16 | 6 | 15 | 13 | y |
若以100天记录的频率作为每日前8小时销售量发生的概率,该生鲜超市当天销售有机蔬菜利润的期望值为决策依据,当购进17份比购进18份的利润的期望值大时,求的取值范围.
附:回归直线方程为,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为( )
A. B. C. D. 2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为进一步规范校园管理,强化饮食安全,提出了“远离外卖,健康饮食”的口号.当然,也需要学校食堂能提供安全丰富的菜品来满足同学们的需求.在学期末,校学生会为了调研学生对本校食堂A部和B部的用餐满意度,从在A部和B部都用过餐的学生中随机抽取了200人,每人分别对其评分,满分为100分.随后整理评分数据,将分数分成6组:第1组,第2组,第3组,第4组,第5组,第6组,得到A部分数的频率分布直方图和B部分数的频数分布表.
分数区间 | 频数 |
7 | |
18 | |
21 | |
24 | |
70 | |
60 |
定义:学生对食堂的“满意度指数”
分数 | ||||||
满意度指数 | 0 | 1 | 2 | 3 | 4 | 5 |
(1)求A部得分的中位数(精确到小数点后一位);
(2)A部为进一步改善经营,从打分在80分以下的前四组中,采用分层抽样的方法抽取8人进行座谈,再从这8人中随机抽取3人参与“端午节包粽子”实践活动,在第3组抽到1人的情况下,第4组抽到2人的概率;
(3)如果根据调研结果评选学生放心餐厅,应该评选A部还是B部(将频率视为概率)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C1:x2=2py(p>0),圆C2:x2+y2﹣8y+12=0的圆心M到抛物线C1的准线的距离为,点P是抛物线C1上一点,过点P,M的直线交抛物线C1于另一点Q,且|PM|=2|MQ|,过点P作圆C2的两条切线,切点为A、B.
(Ⅰ)求抛物线C1的方程;
(Ⅱ)求直线PQ的方程及的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】纸张的规格是指纸张制成后,经过修整切边,裁成一定的尺寸.现在我国采用国际标准,规定以、、、、、等标记来表示纸张的幅面规格.复印纸幅面规格只采用系列和系列,其中系列的幅面规格为:①、、、、所有规格的纸张的幅宽(以表示)和长度(以表示)的比例关系都为;②将纸张沿长度方向对开成两等分,便成为规格,纸张沿长度方向对开成两等分,便成为规格,…,如此对开至规格.现有、、、、纸各一张.若纸的宽度为,则纸的面积为________;这张纸的面积之和等于________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com