【题目】在ABC中,角A,B,C所对的边分別为a,b,c,且asinAcosC+csinAcosA=c.
(1)若c=1,sinC=,求ABC的面积S;
(2)若D是AC的中点,且cosB=,BD=,求ABC的三边长.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,设点,,(其中表示a、b中的较大数)为、两点的“切比雪夫距离”.
(1)若,Q为直线上动点,求P、Q两点“切比雪夫距离”的最小值;
(2)定点,动点满足,请求出P点所在的曲线所围成图形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校学生社团组织活动丰富,学生会为了解同学对社团活动的满意程度,随机选取了100位同学进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[40,50),[50,60),[60,70),…,[90,100]分成6组,制成如图所示频率分布直方图.
(1)求图中x的值;
(2)求这组数据的中位数;
(3)现从被调查的问卷满意度评分值在[60,80)的学生中按分层抽样的方法抽取5人进行座谈了解,再从这5人中随机抽取2人作主题发言,求抽取的2人恰在同一组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,a1=﹣1,b1=1,a2+b2=2.
(1)若a3+b3=5,求{bn}的通项公式;
(2)若T3=21,求S3.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为,射线交曲线于点,倾斜角为的直线过线段的中点且与曲线交于、两点.
(1)求曲线的直角坐标方程及直线的参数方程;
(2)当直线倾斜角为何值时,取最小值,并求出最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用局胜制(即先胜局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.
(1)求甲以比获胜的概率;
(2)求乙获胜且比赛局数多于局的概率;
(3)求比赛局数的分布列,并求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的一个焦点为,离心率为,为椭圆的左顶点,,为椭圆上异于的两个动点,直线,与直线分别交于,两点.
(1)求椭圆的方程;
(2)若与的面积之比为,求的坐标;
(3)设直线与轴交于点,若,,三点共线,判断与的大小关系,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在棱长为的透明密闭的正方形容器中,装有容器总体积一半的水(不计容器壁的厚度),将该正方体容器绕旋转,并始终保持所在直线与水平平面平行,则在旋转过程中容器中水的水面面积的最大值为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在棱长均为的三棱柱中,点在平面内的射影为与的交点,、分别为,的中点.
(1)求证:四边形为正方形;
(2)求直线与平面所成角的正弦值;
(3)在线段上是否存在一点,使得直线与平面没有公共点?若存在求出的值.(该问写出结论即可)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com