精英家教网 > 高中数学 > 题目详情
(2012•闸北区二模)对于任意的平面向量
a
=(x1y1),
b
=(x2y2)
,定义新运算⊕:
a
b
=(x1+x2y1y2)
.若
a
b
c
为平面向量,k∈R,则下列运算性质一定成立的所有序号是
①④
①④

a
b
=
b
a
;    ②(k
a
)⊕
b
=
a
⊕(k
b
)
;    ③k(
a
b
)=(k
a
)⊕(k
b
)

a
⊕(
b
c
)=(
a
b
)⊕
c
;     ⑤
a
⊕(
b
+
c
)=
a
b
+
a
c
分析:根据题意,设向量
a
=(x1y1),
b
=(x2y2)
c
=(m,n),进而分析所给的命题:对于①,计算
a
b
b
a
,分析可得①正确,对于②,分别计算(k
a
)⊕
b
a
⊕(k
b
),分析即可得②错误;对于③,先计算
a
b
,由向量的坐标运算可得k(
a
b
),同理可得(k
a
)⊕(k
b
),分析可得③错误;对于④,先计算
b
c
,进而可得
a
⊕(
b
c
),同理计算可得(
a
b
)⊕
c
=(m+x1+x2,ny1y2),分析可得④正确;对于⑤,由向量的坐标运算可得
b
+
c
,进而可得
a
⊕(
b
+
c
),结合题意,计算可得
a
b
b
c
,由向量的坐标运算可得
a
b
+
b
c
,分析可得⑤正确;综合可得答案.
解答:解:根据题意,设向量
a
=(x1y1),
b
=(x2y2)
c
=(m,n),
分析命题:
对于①,
a
b
=(x1+x2,y1y2),
b
a
=(x2+x1,y2y1),则
a
b
=
b
a
,则①正确;
对于②,(k
a
)⊕
b
=(kx1+x2,ky1y2),而
a
⊕(k
b
)=(x1+kx2,ky1y2),有(k
a
)⊕
b
a
⊕(k
b
),则②错误;
对于③,
a
b
=(x1+x2,y1y2),k(
a
b
)=k(x1+x2,y1y2)=(kx1+kx2,ky1y2),而(k
a
)⊕(k
b
)=(kx1+kx2,k2y1y2),有k(
a
b
)≠(k
a
)⊕(k
b
),③错误;
对于④,
b
c
=(m+x2,ny2),
a
⊕(
b
c
)=(m+x1+x2,ny1y2),而
a
b
=(x1+x2,y1y2),(
a
b
)⊕
c
=(m+x1+x2,ny1y2),有
a
⊕(
b
c
)=(
a
b
)⊕
c
,④正确;
对于⑤,
b
+
c
=(m+x2,n+y2),
a
⊕(
b
+
c
)=(m+x1+x2,y1n+y1y2),而
a
b
=(x1+x2,y1y2),
b
c
=(m+x2,ny2),
a
b
+
b
c
=(2m+x1+x2,y1y2+ny2),⑤正确;
即①④正确;
故答案为①④.
点评:本题是新定义的题型,考查向量数量积的坐标运算,关键是根据题意,套用题干中的新运算“⊕”.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•闸北区二模)若关于x的不等式ax+b>2(x+1)的解集为{x|x<1},则b的取值范围为
(2,+∞)
(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闸北区二模)如图,P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…是曲线C:y2=
1
2
x(y≥0)
上的点,A1(a1,0),A2(a2,0),…,An(an,0),…是x轴正半轴上的点,且△A0A1P1,△A1A2P2,…,△An-1AnPn,…均为斜边在x轴上的等腰直角三角形(A0为坐标原点).
(1)写出an-1、an和xn之间的等量关系,以及an-1、an和yn之间的等量关系;
(2)猜测并证明数列{an}的通项公式;
(3)设bn=
1
an+1
+
1
an+2
+
1
an+3
+…+
1
a2n
,集合B={b1,b2,b3,…,bn,…},A={x|x2-2ax+a2-1<0,x∈R},若A∩B=∅,求实常数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闸北区二模)设复数z满足i(z-1)=3-z,其中i为虚数单位,则|z|=
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闸北区二模)计算 
lim
n→∞
[(
2
3
)
n
+
1-n
4+n
]
=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闸北区二模)设f(x)=(x-1)2(x≤1),则f-1(4)=
-1
-1

查看答案和解析>>

同步练习册答案