精英家教网 > 高中数学 > 题目详情

如图,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BCM为BC的中点

(Ⅰ)证明:AMPM

(Ⅱ)求二面角PAMD的大小;

(Ⅲ)求点D到平面AMP的距离

(Ⅰ)证明见解析(Ⅱ)45°(Ⅲ)


解析:

(Ⅰ) 取CD的中点E,连结PE、EM、EA.

∵△PCD为正三角形,∴PE⊥CD,PE=PDsin∠PDE=2sin60°=

∵平面PCD⊥平面ABCD, ∴PE⊥平面ABCD           (2分)

∵四边形ABCD是矩形

∴△ADE、△ECM、△ABM均为直角三角形

由勾股定理可求得:EM=,AM=,AE=3

                           (4分)

,又在平面ABCD上射影:

∴∠AME=90°,       ∴AM⊥PM                   (6分)

(Ⅱ)由(Ⅰ)可知EM⊥AM,PM⊥AM

∴∠PME是二面角P-AM-D的平面角            (8分)

∴tan ∠PME=

∴∠PME=45°

∴二面角P-AM-D为45°;                    (10分)

(Ⅲ)设D点到平面PAM的距离为,连结DM,则

 ,    ∴

                          (12分)

中,由勾股定理可求得PM=

,所以:

即点D到平面PAM的距离为                        (14分)

解法2:(Ⅰ) 以D点为原点,分别以直线DA、DC为x轴、y轴,建立如图所示的空间直角坐标系,

依题意,可得

     ……2分

      (4分)

 

,∴AM⊥PM              (6分)

 (Ⅱ)设,且平面PAM,则

   即

 ,   

,得                     (8分)

,显然平面ABCD,    ∴

结合图形可知,二面角P-AM-D为45°;     (10分)

(Ⅲ) 设点D到平面PAM的距离为,由(Ⅱ)可知与平面PAM垂直,则

=

即点D到平面PAM的距离为               (14分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=2
2
,M为BC的中点.
(Ⅰ)证明:AM⊥PM;
(Ⅱ)求二面角P-AM-D的大小;
(Ⅲ)求点D到平面AMP的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=2
2
,M为BC的中点.
(1)证明:AM⊥PM;
(2)求三棱锥P-ADM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=2
2
,M为BC的中点.
(Ⅰ)证明:AM⊥PM;     
(Ⅱ)求点D到平面AMP的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•朝阳区二模)如图,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=2
2
,M为BC的中点.
(Ⅰ)证明:AM⊥PM;
(Ⅱ)求二面角P-AM-D的大小;
(Ⅲ)求直线PD与平面PAM所成角的正弦值.

查看答案和解析>>

同步练习册答案