精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)求函数的值域;

(2)若时,函数的最小值为,求的值和函数 的最大值.

【答案】(1)值域为 (2)

【解析】

试题(1)解本小题的关键是利用,把原函数转化为关于t的二次函数的值域问题.(2)在(1)的基础上可确定上是减函数,然后根据f(x)的最小值为-7,建立关于a的方程求出a值,从而得到函数f(x)的最大值.

(1)对称轴 上是减函数

所以值域为 ----------------------------------------- 6

(2)

所以上是减函数

(不合题意舍去)------------------------11

有最大值,

-----------------------------------------------13

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知关于x的方程为2kx2﹣2x﹣5k﹣2=0的两个实数根一个小于1,另一个大于1,则实数k的取值范围是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U=R,集合A={x|2x-1≥1},B={x|x2-4x-5<0}.

(Ⅰ)求AB,(UA)∪(UB);

(Ⅱ)设集合C={x|m+1<x<2m-1},若BC=C,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方形的棱长为1,点分别是棱的中点.

(Ⅰ)求二面角的余弦值;

(Ⅱ)以为底面作正三棱柱,若此三棱柱另一底面三个顶点也都在该正方体的表面上,求这个正三棱柱的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PPD//平面MACPA=PD=,AB=4.

(I)求证:MPB的中点;

(II)求二面角B-PD-A的大小;

(III)求直线MC与平面BDP所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极点与直角坐标系的原点重合,极轴与x轴的正半轴重合,圆C的极坐标方程是ρ=asinθ,直线l的参数方程是 (t为参数)
(1)若a=2,直线l与x轴的交点是M,N是圆C上一动点,求|MN|的最大值;
(2)直线l被圆C截得的弦长等于圆C的半径的 倍,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=lg(ax-bx)(a>1>b>0).

(Ⅰ)求fx)的定义域;

(Ⅱ)当x∈(1,+∞)时,fx)的值域为(0,+∞),且f(2)=lg2,求实数ab的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某食品企业一个月内被消费者投诉的次数用表示.据统计,随机变量的概率分布如下表所示.

0

1

2

3

0.1

0.3

(1)求的值和的数学期望;

(2)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex ,g(x)=2ln(x+1)+ex
(1)x∈(﹣1,+∞)时,证明:f(x)>0;
(2)a>0,若g(x)≤ax+1,求a的取值范围.

查看答案和解析>>

同步练习册答案