【题目】已知函数
(1)求函数的值域;
(2)若时,函数的最小值为,求的值和函数 的最大值.
【答案】(1)值域为 ;(2)。
【解析】
试题(1)解本小题的关键是利用,把原函数转化为关于t的二次函数,的值域问题.(2)在(1)的基础上可确定在上是减函数,然后根据f(x)的最小值为-7,建立关于a的方程求出a值,从而得到函数f(x)的最大值.
设
(1)对称轴 在上是减函数
所以值域为 ----------------------------------------- 6
(2)∵ 由
所以在上是减函数
或(不合题意舍去)------------------------11
当时有最大值,
即 -----------------------------------------------13
科目:高中数学 来源: 题型:
【题目】设全集U=R,集合A={x|2x-1≥1},B={x|x2-4x-5<0}.
(Ⅰ)求A∩B,(UA)∪(UB);
(Ⅱ)设集合C={x|m+1<x<2m-1},若B∩C=C,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】正方形的棱长为1,点分别是棱的中点.
(Ⅰ)求二面角的余弦值;
(Ⅱ)以为底面作正三棱柱,若此三棱柱另一底面三个顶点也都在该正方体的表面上,求这个正三棱柱的高.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PPD//平面MAC,PA=PD=,AB=4.
(I)求证:M为PB的中点;
(II)求二面角B-PD-A的大小;
(III)求直线MC与平面BDP所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知极点与直角坐标系的原点重合,极轴与x轴的正半轴重合,圆C的极坐标方程是ρ=asinθ,直线l的参数方程是 (t为参数)
(1)若a=2,直线l与x轴的交点是M,N是圆C上一动点,求|MN|的最大值;
(2)直线l被圆C截得的弦长等于圆C的半径的 倍,求a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lg(ax-bx)(a>1>b>0).
(Ⅰ)求f(x)的定义域;
(Ⅱ)当x∈(1,+∞)时,f(x)的值域为(0,+∞),且f(2)=lg2,求实数a、b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某食品企业一个月内被消费者投诉的次数用表示.据统计,随机变量的概率分布如下表所示.
0 | 1 | 2 | 3 | |
0.1 | 0.3 |
(1)求的值和的数学期望;
(2)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex﹣ ,g(x)=2ln(x+1)+e﹣x .
(1)x∈(﹣1,+∞)时,证明:f(x)>0;
(2)a>0,若g(x)≤ax+1,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com