精英家教网 > 高中数学 > 题目详情
(21)已知函数

       (I)求在区间上的最大值

       (II)是否存在实数使得的图象与的图象有且只有三个不同的交点?若存在,求出的取值范围;若不存在,说明理由。

本小题主要考查函数的单调性、极值、最值等基本知识,考查运用导数研究函数性质的方法,考查运算能力,考查函数与方程、数形结合、分类与整合等数学思想方法和分析问题、解决问题的能力。

       解:(I)

       当时,上单调递增,

      

       当时,

       当时,上单调递减,

             

              综上,

       (II)函数的图象与的图象有且只有三个不同的交点,即函数

       的图象与轴的正半轴有且只有三个不同的交点。

      

       当时,是增函数;

       当时,是减函数;

       当时,是增函数;

       当时,

      

    ∵当充分接近0时,充分大时,

       要使的图象与轴正半轴有三个不同的交点,必须且只须

         即

       所以存在实数,使得函数的图象有且只有三个不同的交点,的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(江西卷文21)已知函数

(1)求函数的单调区间;

(2)若函数的图像与直线恰有两个交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(湖南卷文21)已知函数有三个极值点。

(I)证明:

(II)若存在实数c,使函数在区间上单调递减,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

(湖南卷理21)已知函数f(x)=ln2(1+x)-.

(I )  求函数的单调区间;

(Ⅱ)若不等式对任意的都成立(其中e是自然对数的底数).求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(福建卷文21)已知函数的图象过点(-1,-6),且函数的图象关于y轴对称.

(Ⅰ)求mn的值及函数y=f(x)的单调区间;

(Ⅱ)若a>0,求函数y=f(x)在区间(a-1,a+1)内的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(陕西卷理21)已知函数)恰有一个极大值点和一个极小值点,其中一个是

(Ⅰ)求函数的另一个极值点;

(Ⅱ)求函数的极大值和极小值,并求的取值范围.

查看答案和解析>>

同步练习册答案