精英家教网 > 高中数学 > 题目详情
3.关于x的不等式x2+ax-2<0在区间[1,4]上有解,则实数a的取值范围为(  )
A.(-∞,1)B.(-∞,1]C.(1,+∞)D.[1,+∞)

分析 关于x的不等式x2+ax-2<0在区间[1,4]上有解,等价于a<${(\frac{2}{x}-x)}_{max}$,x∈[1,4],求出f(x)=$\frac{2}{x}$-x在x∈[1,4]的最大值即可.

解答 解:关于x的不等式x2+ax-2<0在区间[1,4]上有解,
等价于a<${(\frac{2}{x}-x)}_{max}$,x∈[1,4];
设f(x)=$\frac{2}{x}$-x,x∈[1,4],
则函数f(x)在x∈[1,4]单调递减,
且当x=1时,函数f(x)取得最大值f(1)=1;
所以实数a的取值范围是(-∞,1).
故选:A.

点评 本题考查了函数的单调性、分离参数法,考查了等价转化能力,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.平面上有两个定点A、B,任意放置5个点C1、C2、C3、C4、C5,使其与A、B两点均不重合,如果存在Ci、Cj(i>j,i,j∈{1,2,3,4,5})使不等式|sin∠ACiB-sin∠ACjB|≤$\frac{1}{4}$成立,则称(Ci,Cj))为一个点对,则这样的点对(  )
A.不存在B.至少有1对C.至多有1对D.恰有1对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图所示的分数三角形,称为“莱布尼茨三角形”.这个三角形的规律是:各行中的每一个数,都等于后面一行中与它相邻的两个数之和(例如第4行第2个数$\frac{1}{12}$等于第5行中的第2个数$\frac{1}{20}$与第3个数$\frac{1}{30}$之和).则
在“莱布尼茨三角形”中,第10行从左到右第2个数到第8个数中各数的倒数之和为(  )
A.5010B.5020C.10120D.10130

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC 中,角 A、B、C 所对的边分别为a、b、c,且满足c=2$\sqrt{3}$,c cos B+( b-2a )cos C=0.
(1)求角 C 的大小;
(2)求△ABC 面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.不等式x2+8x<20的解集是(-10,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.点P(2,5)关于直线x+y=1的对称点的坐标是(  )
A.(-5,-2)B.(-4,-1)C.(-6,-3)D.(-4,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知实数x,y满足$\left\{\begin{array}{l}{y≥x+2}\\{x+y≤a}\\{x≥1}\end{array}$,其中a=$\int_0^3$(x2-1)dx,则实数$\frac{y}{x+1}$的最小值为(  )
A.$\frac{3}{2}$B.$\frac{5}{2}$C.$\frac{2}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,长方体ABCD-A′B′C′D′中,AA′=3,AB=4,AD=5,E、F分别是线段AA′和AC的中点,则异面直线EF与CD′所成的角是(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知下列一组数据等式:
s1=1;
s2=2+3=5
s3=4+5+6=15
s4=7+8+9+10=34
s5=11+12+13+14+15=65
s6=16+17+18+19+20+21=111;

(1)写出s7对应的等式;
(2)先求出sn对应等式的第一项,并写出sn对应的等式.

查看答案和解析>>

同步练习册答案