精英家教网 > 高中数学 > 题目详情
如图,四棱锥P-ABCD中,底面ABCD为矩形,PD⊥平面ABCD,点E,F分别是AB和PC的中点.
(1)求证:EF∥平面PAD;
(2)若CD=2PD=2AD=2,四棱锥P-ABCD外接球的表面积.
分析:(1)取PD的中点G,连接FG,GA,由G、F分别是PD、PC的中点,知GF∥DC,GF=
1
2
DC,由E是AB中点,AE=
1
2
AB,矩形ABCD中,AB∥DC,AB=DC,知四边形AEFG是平行四边形,由此能够证明EF∥平面PDA.
(2)由底面ABCD为矩形,PD⊥平面ABCD,知AB⊥平面PAD,故四棱锥P-ABCD的 外接球即以DP,DA,DC为棱的长方体的外接球.由此能求出四棱锥P-ABCD外接球的表面积.
解答:(1)证明:取PD的中点G,连接FG,GA,由G、F分别是PD、PC的中点,知GF是△PDC的中位线,
GF∥DC,GF=
1
2
DC,
E是AB中点,AE=
1
2
AB,
矩形ABCD中,AB∥DC,AB=DC,
∴GF∥AE,GF=AE?…(3分)
∴四边形AEFG是平行四边形,EF∥AG,
EF在平面PDA外,AG在平面PDA内,
∴EF∥平面PDA.…(6分)
(2)解:∵底面ABCD为矩形,PD⊥平面ABCD,
∴AB⊥AD,AB⊥PD,
∴AB⊥平面PAD,
∴四棱锥P-ABCD的 外接球即以DP,DA,DC为棱的长方体的外接球.
∴R=
12+12+22
2
=
6
2

∴S=4πR2=6π.…(12分)
点评:本题考查直线与平面平行的证明,考查四棱锥的外接球的表面积的求法.解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中点.求证:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.
(1)求证:AD⊥PB;
(2)求三棱锥P-MBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且侧面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求证:PD⊥AC;
(2)在棱PA上是否存在一点E,使得二面角E-BD-A的大小为45°,若存在,试求
AE
AP
的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,点F是PB中点.
(Ⅰ)若E为BC中点,证明:EF∥平面PAC;
(Ⅱ)若E是BC边上任一点,证明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直线PA与平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,设PC与AD的夹角为θ.
(1)求点A到平面PBD的距离;
(2)求θ的大小;当平面ABCD内有一个动点Q始终满足PQ与AD的夹角为θ,求动点Q的轨迹方程.

查看答案和解析>>

同步练习册答案