精英家教网 > 高中数学 > 题目详情
在下列函数中,是奇函数的有几个(  )
①f(x)=sin(π-x);
f(x)=
|x|
x
;     
③f(x)=x3-x;    
④f(x)=2x+2-x
A.1个B.2个C.3个D.4个
由于①f(x)=sin(π-x)=sinx,故是奇函数.
由于②f(x)=
|x|
x
 的定义域为{x|x≠0},,关于原点对称,再由f(-x)=
|-x|
-x
=-
|x|
x
=-f(x),
可得②是奇函数.
由于f(x)=x3-x的定义域为R,f(-x)=-x3+x=-f(x),故③是奇函数.
由于④f(x)=2x+2-x的定义域是R,f(-x)=2-x +2x =f(x),故④是偶函数.
故选C.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题中
①当n=0时,幂函数y=xn的图象是一条直线
②幂函数的图象都经过点(0,0),(1,1)
③幂函数的图象不可能出现在第四象限
④若幂函数y=xn是奇函数,则y=xn在其定义域上是增函数
⑤幂函数y=xn当n<0时,在第一象限内函数值随x值的增大而减小
其中正确的命题是
③⑤
③⑤
(将所选命题的序号均填在横线上)

查看答案和解析>>

同步练习册答案