精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的两个焦点分别为是椭圆上任意一点,且的最大值为4,椭圆的离心率与双曲线的离心率互为倒数.

1)求椭圆方程;

2)设点,过点作直线与圆相切且分别交椭圆于,求直线的斜率.

【答案】(1);(2.

【解析】

(1)利用椭圆的离心率,以及基本不等式和椭圆的定义,求出得值,即可得到椭圆的标准方程;

(1)设为,由直线与圆相切,得到,直线的方程与椭圆的方程联立,求得,同理求得,再结合斜率公式,即可求解.

(1)由题意,椭圆的定义,可得

,解得

由双曲线离心率为2,可得椭圆离心率为,即,即

所以,又由

所以椭圆方程为.

(2)显然直线的斜率存在,设为

由于直线与圆相切,则

直线

联立方程组

所以,得

同理,当与椭圆相交时,可得

所以

所以直线的斜率

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xiyi)(i=12n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是

A. yx具有正的线性相关关系

B. 回归直线过样本点的中心(

C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg

D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是两个不重合的平面,在下列条件中,可判断平面平行的是(

A.是平面内两条直线,且

B.是两条异面直线,,且

C.内不共线的三点到的距离相等

D.都垂直于平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】每年的寒冷天气都会带热“御寒经济”,以餐饮业为例,当外面太冷时,不少人都会选择叫外卖上门,外卖商家的订单就会增加,下表是某餐饮店从外卖数据中抽取的5天的日平均气温与外卖订单数.

)经过数据分析,一天内平均气温与该店外卖订单数(份)成线性相关关系,试建立关于的回归方程,并预测气温为时该店的外卖订单数(结果四舍五入保留整数);

)天气预报预测未来一周内(七天),有3天日平均气温不高于,若把这7天的预测数据当成真实数据,则从这7天任意选取2天,求恰有1天外卖订单数不低于160份的概率.

附注:回归方程中斜率和截距的最小二乘估计公式分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了美化校园,要对校园内某一区域作如下设计,如图,已知,在边BC上选一点P. 沿着APCP重新栽种花木,图中阴影部分铺上草坪. AP段栽种花木费用是每米3a元,CP段栽种花木费用是每米2a元,其中a是正常数..

1)求栽种花木费用y关于θ的函数表达式;

2)求的值,使得栽种花木费用y最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第三届移动互联创新大赛,于2017年3月~10月期间举行,为了选出优秀选手,某高校先在计算机科学系选出一种子选手再从全校征集出3位志愿者分别与进行一场技术对抗赛根据以往经验 与这三位志愿者进行比赛一场获胜的概率分别为且各场输赢互不影响.

(1)求甲恰好获胜两场的概率;

(2)求甲获胜场数的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.(其中常数,是自然对数的底数.

1)讨论函数的单调性;

2)证明:对任意的,当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在①;②;③ 这三个条件中任选一个,补充在下面问题中的横线上,并解答相应的问题.

中,内角ABC的对边分别为abc且满足________________,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的单调区间;

2)若上存在一点,使得成立,求的取值范围.

查看答案和解析>>

同步练习册答案