精英家教网 > 高中数学 > 题目详情

(本小题满分13分)

如图1,在等腰梯形中,上一点, ,且.将梯形沿折成直二面角,如图2所示.

(Ⅰ)求证:平面平面

(Ⅱ)设点关于点的对称点为,点所在平面内,且直线与平面所成的角为,试求出点到点的最短距离.

 

【答案】

(1)根据题意平几知识易得 ,同时 ,可知是二面角的平面角,从而得到证明。

(2)

【解析】

试题分析:解:(Ⅰ)在图1中,由平几知识易得

在图2中,∵

是二面角的平面角,

∵二面角是直二面角,∴.

平面平面

平面平面平面. 

(Ⅱ)由(Ⅰ)知两两互相垂直,

为原点,分别以轴,建立空间直角坐标系,如图所示.…6分

,

.

设平面的一个法向量为

,即. 取,得.

,则.

直线与平面所成的角为

,化简得

从而有

所以,当时,取得最小值.

即点到点的最短距离为

考点:直线与直线、直线与平面、平面与平面的位置关系

点评:本小题通过对基本知识的考查,培养空间想象能力、推理论证能力及运算求解能力,考查化归与转化思想、数形结合思想、函数与方程思想及应用意识。

 

练习册系列答案
相关习题

科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题

(本小题满分13分)已知函数.

(1)求函数的最小正周期和最大值;

(2)在给出的直角坐标系中,画出函数在区间上的图象.

(3)设0<x<,且方程有两个不同的实数根,求实数m的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题

(本小题满分13分)已知定义域为的函数是奇函数.

(1)求的值;(2)判断函数的单调性;

(3)若对任意的,不等式恒成立,求k的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题

(本小题满分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题

 

(本小题满分13分)如图,正三棱柱的所有棱长都为2,的中点。

(Ⅰ)求证:∥平面

(Ⅱ)求异面直线所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[来源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题

(本小题满分13分)

已知为锐角,且,函数,数列{}的首项.

(1) 求函数的表达式;

(2)在中,若A=2,,BC=2,求的面积

(3) 求数列的前项和

 

 

查看答案和解析>>

同步练习册答案