精英家教网 > 高中数学 > 题目详情
13.分解因式:x2-4xy-4y2

分析 利用平方差公式求解即可.

解答 解:x2-4xy-4y2=(x-2y)2-8y2
=(x-2y+2$\sqrt{2}y$)(x-2y+2$\sqrt{2}y$)

点评 本题考查因式分解的应用,平方差公式的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.求函数y=-x2+4x+6,x∈(-1,4]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}满足a1=0,a2=2,且对任意m,n∈N*,都有a2n-1+a2m-1=2am+n-1+2(m-n)2
(Ⅰ)求a3
(Ⅱ)设bn=a2n+1-a2n-1(n∈N*),证明:{bn}是等差数列;
(Ⅲ)试判断关于n的方程an=($\frac{1}{2}$)n+8(n∈N*)是否有解?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≥2}\\{x-y≤2}\\{0≤y≤3}\end{array}\right.$,则目标函数2x-y的最大值是7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设f(x)是在区间[a,b]上单调,且f(a)f(b)<0,则方程f(x)=0在区间[a,b]上(  )
A.必有唯一实根B.至少有一实根C.至多有一实根D.没有实根

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=tcos\frac{π}{3}}\\{y=tsin\frac{π}{3}}\end{array}\right.$(t为参数,t≠0),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ,曲线C3的极坐标方程为ρ2-6ρcosθ+8=0.
(1)求曲线C1与C2交点的极坐标(ρ≥0,0≤θ<2π)
(2)若点P是曲线C3上一动点,求点P到曲线C1的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.方程|x2-4x+3|=a(a∈R)有4个实数解,则a的取值范围是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.给出下列求导过程:①($\frac{1}{x}$)′=-$\frac{1}{{x}^{2}}$;②(logax)′=($\frac{lnx}{lna}$)′=$\frac{1}{xlna}$;③(ax)′=(e${\;}^{ln{a}^{x}}$)′=(exlna)′=exlnalna=axlna;④($\frac{cos2x}{sinx-cosx}$)′=(-sinx-cosx)′=cosx-sinx,其中正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设A={x|-3≤x≤5},B={x|x≥a或x≤-a,a>0}.若A∩B=∅,求实数α的取值范围.

查看答案和解析>>

同步练习册答案