精英家教网 > 高中数学 > 题目详情
9.已知数列{an}为等差数列,若a1=3,a2+a3=12,则a2=(  )
A.27B.36C.5D.6

分析 利用等差数列的通项公式即可得出.

解答 解:设等差数列{an}的公差为d,∵a1=3,a2+a3=12,∴2×3+3d=12,解得d=2.
则a2=3+2=5.
故选:C.

点评 本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.方程$\frac{x|x|}{16}+\frac{y|y|}{9}=-1$的曲线即为函数y=f(x)的图象,对于函数y=f(x),有如下结论:
①f(x)在R上单调递减;
②函数F(x)=4f(x)+3x不存在零点;
③y=f(|x|)的最大值为3;
④若函数g(x)和f(x)的图象关于原点对称,则y=g(x)由方程$\frac{y|y|}{16}+\frac{x|x|}{9}=1$确定.
其中所有正确的命题序号是(  )
A.③④B.②③C.①④D.①②

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知F1,F2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,若椭圆外存在一点P,满足$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,则椭圆C的离心率e的取值范围是[$\frac{\sqrt{2}}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知p:|x|≤2,q:0≤x≤2,则p是q的(  )条件.
A.充要B.充分不必要
C.必要不充分D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若函数f(x)=-x3+6x2+m的极小值为23,则实数m等于23.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某企业生产A、B、C三种家电,经市场调查决定调整生产方案,计划本季度(按不超过480个工时计算)生产A、B、C三种家电共120台,其中A家电至少生产20台,已知生产A、B、C三种家电每台所需的工时分别为3、4、6个工时,每台的产值分别为20、30、40千元,则按此方案生产,此季度最高产值为(  )千元.
A.3600B.350C.4800D.480

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四棱锥P-ABCD中,底面四边形ABCD是以O为中心的正方形,PO⊥底面ABCD,AB=2,M为BC的中点且PM⊥AP.
(1)证明:PM⊥平面PAD;
(2)求四棱锥P-ABMO的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若变量x,y满足约束条件$\left\{\begin{array}{l}{x+2y≥0}\\{x-y≤0}\\{x-2y+2≥0}\end{array}\right.$,且z=$\frac{y}{x-a}$仅在点A(-1,$\frac{1}{2}$)处取得最大值,则实数a的取值范围为(  )
A.[-2,-1)B.(-∞,-1)C.(-2,-1)D.(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=|2x+3|+|2x-1|.
(Ⅰ)求不等式f(x)<8的解集;
(Ⅱ)若关于x的不等式f(x)≤|3m+1|有解,求实数m的取值范围.

查看答案和解析>>

同步练习册答案