精英家教网 > 高中数学 > 题目详情

已知,直线为平面上的动点,过点的垂线,垂足为点,且

(Ⅰ)求动点的轨迹曲线的方程;

(Ⅱ)设动直线与曲线相切于点,且与直线相交于点,试问:在轴上是否存在一个定点,使得以为直径的圆恒过此定点?若存在,求出定点的坐标;若不存在,说明理由.

 

【答案】

(Ⅰ)(Ⅱ)存在一个定点符合题意

【解析】

试题分析:(Ⅰ)设点,则,由,得

,化简得

(Ⅱ)由

,得,从而有,

设点,使得,则

所以存在一个定点符合题意 

考点:本小题主要考查相关点法求轨迹方程和直线与抛物线的位置关系的判断和应用.

点评:解决直线与圆锥曲线的位置关系问题时,一般离不开联立方程组,运算量较大,所以要仔细运算.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在复平面上,已知直线l上的点所对应的复数z满足|z+i|=|z-3-i|,则直线l的倾斜角为
 
.(结果反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

在坐标平面上,圆C的圆心在原点且半径为2,已知直线L与圆C相交,请问L与下列哪些图形一定相交?
(1)x轴     (2)y=(
1
2
)x
   (3)x2+y2=3    (4)(x-2)2+y2=16   (5)
x2
9
+
y2
4
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知坐标平面上点M(x,y)与两个定点M1(26,1),M2(2,1)的距离之比等于5.
(1)求点M的轨迹方程,并说明轨迹是什么图形;
(2)记(1)中的轨迹为C,过点A(-2,3)的直线l被C所截得的线段的长为8,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•天门模拟)已知命题:
①函数f(x)=
1
lgx
在(0,+∞)上是减函数;
②已知
a
=(3,4),
b
=(0,-1),则
a
b
方向上的投影为-4;
③函数f(x)=2sinxcos|x|的最小正周期为π;
④函数f(x)的定义域为R,则f(x)是奇函数的充要条件是f(0)=0;
⑤在平面上,到定点(2,1)的距离与到定直线3x+4y-10的距离相等的点的轨迹是抛物线.
其中,正确命题的序号是
②③
②③
.(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•鹰潭一模)在坐标平面上,圆C的圆心在原点且半径为2,已知直线l与圆C相交,则直线l与下列方程的图形一定相交的是(  )

查看答案和解析>>

同步练习册答案