精英家教网 > 高中数学 > 题目详情
3.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-2x,
(1)求f(x)在x<0时的解析式;
(2)如果f(x)在[-1,a-2]上单调递减,求实数a的取值范围.

分析 (1)根据函数奇偶性的性质,利用转化法进行求解即可.
(2)结合一元二次函数的单调性的性质进行判断即可.

解答 解:(1)当x<0时,则-x>0,
故f(-x)=(-x)2+2x=x2+2x,
由于f(x)为奇函数,f(-x)=-f(x),
于是f(-x)=-x2-2x,x<0;…(6分)
(2)要使f(x)在[-1,a-2]上单调递减,必须$\left\{\begin{array}{l}{a-2>-1}\\{a-2≤1}\end{array}\right.$,…(10分)
即$\left\{\begin{array}{l}{a>1}\\{a≤3}\end{array}\right.$,
解得1<a≤3.…(12分)

点评 本题主要考查函数奇偶性和单调性的应用,利用一元二次函数的性质结合函数奇偶性的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图,在三棱锥P-ABC中,PA⊥平面ABC,E,F分别为PC,PB中点,∠ACB=90°.
(Ⅰ)求证:EF∥平面ABC;
(Ⅱ)求证:EF⊥AE;
(Ⅲ)若PA=AC=CB,AB=4,求几何体EFABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若直线$\sqrt{3}x-2y=0$与圆(x-4)2+y2=r2(r>0)相切,则r=(  )
A.$\frac{48}{7}$B.5C.$\frac{{4\sqrt{21}}}{7}$D.25

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)的定义域为D,如果对于任意x1∈D,存在唯一的x2∈D,使$\frac{f({x}_{1})+f({x}_{2})}{2}$=C(C为常数)成立,则称函数y=f(x)在D上的均值为C,给出下列四个函数:
①y=x3
②y=4sinx
③y=lnx
④y=2x
则在其定义域上均值为2的所有函数是(  )
A.①②B.③④C.①③D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某地为了抑制一种有害昆虫的繁殖,引入了一种以该昆虫为食物的特殊动物,已知该动物的繁殖数量y(只)与引入时间x(年)的关系为y=alog2(x+1),若该动物在引入一年后的数量为100只,则第7年它们发展到(  )
A.300只B.400只C.600只D.700只

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.无穷数列1,3,6,10…的通项公式为(  )
A.an=$\frac{{{n^2}+n}}{2}$B.an=$\frac{{{n^2}-n}}{2}$C.an=n2-n+1D.an=n2+n+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.F是椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1的右焦点,P是其上一点;点B(2,1),则|PB|+|PF|的最小值为10-$\sqrt{37}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知x1,x2是函数 f(x)=2sinx+cosx-m在[0,π]内的两个零点,则sin(x1+x2)=(  )
A.$\frac{1}{2}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知点M(a,b)在直线4x-3y+c=0上,若(a-1)2+(b-1)2的最小值为4,则实数c的值为(  )
A.-21或19B.-11或9C.-21或9D.-11或19

查看答案和解析>>

同步练习册答案