精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面为正方形,平面,点分别为的中点.

(Ⅰ)求证:

(Ⅱ)求证:平面

(Ⅲ)求平面与平面所成二面角(锐角)的余弦值.

【答案】(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)

【解析】

(Ⅰ)以为原点,所在直线分别为轴、轴、轴,再证明即可.

(Ⅱ)同(Ⅰ),证明与平面的法向量垂直即可.

(Ⅲ)分别计算平面与平面的法向量再求解二面角的夹角余弦值即可.

解:(Ⅰ)因为平面,所以,,且底面为正方形,

所以.为原点,所在直线分别为轴、轴、轴,建立如图所示空间直角坐标系,设,则,,,,,.

,,

.

所以.

(Ⅱ)由(Ⅰ)知,,,.

,

所以平面.

所以是平面的法向量.

因为,

平面,

所以∥平面.

(Ⅲ)设平面的法向量为,则

,则,.

于是.

平面的法向量为.

设平面与平面所成二面角(锐角),

.

所以平面与平面所成二面角(锐角)的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了20161月至201812月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.

根据该折线图,判断下列结论:

1)月接待游客量逐月增加;

2)年接待游客量逐年增加;

3)各年的月接待游客量高峰期大致在78月;

4)各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳.

其中正确结论的个数为(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln (x+1)-xa∈R.

(1)当a>0时,求函数f(x)的单调区间;

(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的短轴长为2,离心率为分别是椭圆的右顶点和下顶点.

1)求椭圆的标准方程;

2)已知是椭圆内一点,直线的斜率之积为,直线分别交椭圆于两点,记的面积分别为.

①若两点关于轴对称,求直线的斜率;

②证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,若对于,,使得成立,则称集合M是“互垂点集”.给出下列四个集合:;;;.其中是“互垂点集”集合的为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定椭圆C:(),称圆心在原点O,半径为的圆是椭圆C的“卫星圆”.若椭圆C的离心率,点C上.

(1)求椭圆C的方程和其“卫星圆”方程;

(2)点P是椭圆C的“卫星圆”上的一个动点,过点P作直线,使得,与椭圆C都只有一个交点,且,分别交其“卫星圆”于点M,N,证明:弦长为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆,直线经过点,直线经过点,直线直线,且直线分别与椭圆相交于两点和两点.

()分别为椭圆的左、右焦点,且直线轴,求四边形的面积;

()若直线的斜率存在且不为0,四边形为平行四边形,求证:;

()()的条件下,判断四边形能否为矩形,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,中点.

(1)求证:平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)求函数的单调区间;

2)若函数有两个零点,求满足条件的最小正整数的值.

查看答案和解析>>

同步练习册答案