精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)讨论函数的单调性;

2)若,对任意,不等式恒成立,求实数的取值范围.

【答案】(1)答案不唯一,见解析;(2)

【解析】

1)先由题意得到定义域,对函数求导,分别讨论两种情况,即可得出结果;

2)因为,由(1)得到函数上单调递增,不妨设,则可化为,令,则上的减函数,对求导,根据函数单调性,即可得出结果.

1)∵依题意可知:函数的定义域为

时,恒成立,所以上单调递增.

时,由;由

综上可得当时,上单调递增;

时,上单调递减;在上单调递增.

2)因为,由(1)知,函数上单调递增,

不妨设,则

可化为

,则

所以上的减函数,

上恒成立,等价于上恒成立,

,所以

,所以,所以函数上是增函数,

所以(当且仅当时等号成立)

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义:若函数对任意的,都有成立,则称上的“淡泊”函数.

1)判断是否为上的“淡泊”函数,说明理由;

2)是否存在实数,使上的“淡泊”函数,若存在,求出的取值范围;不存在,说明理由;

3)设上的“淡泊”函数(其中不是常值函数),且,若对任意的,都有成立,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线.点A,抛物线上的点P(x,y),过点B作直线AP的垂线,垂足为Q

(I)求直线AP斜率的取值范围;

(II)求的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种植基地将编号分别为1,2,3,4,5,6的六个不同品种的马铃薯种在如图所示的

A

B

C

D

E

F

这六块实验田上进行对比试验,要求这六块实验田分别种植不同品种的马铃薯,若种植时要求编号1,3,5的三个品种的马铃薯中至少有两个相邻,且2号品种的马铃薯不能种植在A、F这两块实验田上,则不同的种植方法有 ( )

A. 360种 B. 432种 C. 456种 D. 480种

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知函数fx=,其中a>0.

)若a=1,求曲线y=fx)在点(2f2))处的切线方程;

)若在区间上,fx>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于正三角形,挖去以三边中点为顶点的小正三角形,得到一个新的图形,这样的过程称为一次镂空操作,设是一个边长为1的正三角形,第一次镂空操作后得到图1,对剩下的3个小正三角形各进行一次镂空操作后得到图2,对剩下的小三角形重复进行上述操作,设是第次挖去的小三角形面积之和(如是第1次挖去的中间小三角形面积,是第2次挖去的三个小三角形面积之和),是前次挖去的所有三角形的面积之和,则

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是矩形,平面,点分别在线段上,且,其中,连接,延长的延长线交于点,连接

(Ⅰ)求证:平面

(Ⅱ)若时,求二面角的正弦值;

(Ⅲ)若直线与平面所成角的正弦值为时,求值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系xOy,在x轴的正半轴上,依次取点,并在第一象限内的抛物线上依次取点,使得都为等边三角形,其中为坐标原点,设第n个三角形的边长为

,并猜想不要求证明);

,记为数列中落在区间内的项的个数,设数列的前m项和为,试问是否存在实数,使得对任意恒成立?若存在,求出的取值范围;若不存在,说明理由;

已知数列满足:,数列满足:,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,,已知GE分别为的中点,DF分别为线段ACAB上的动点(不包括端点),若,则线段DF的长度的平方取值范围为( ).

A.B.C.D.

查看答案和解析>>

同步练习册答案