精英家教网 > 高中数学 > 题目详情
2.实轴长为4$\sqrt{5}$,且焦点为(±5,0)的双曲线的标准方式为(  )
A.$\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{5}$=1B.$\frac{{y}^{2}}{20}$-$\frac{{x}^{2}}{5}$=1C.$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{20}$=1D.$\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{25}$=1

分析 根据题意,可以设要求双曲线的标准方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{20-{a}^{2}}$=1,又由其实轴长分析可得a的值,代入双曲线的方程计算可得答案.

解答 解:根据题意,要求双曲线的焦点为(±5,0),在x轴上,且c=5,
则设其标准方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{20-{a}^{2}}$=1,
又由其实轴长为4$\sqrt{5}$,则2a=4$\sqrt{5}$,即a=2$\sqrt{5}$,
代入双曲线的方程可得:$\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{5}$=1,
故选:A.

点评 本题考查双曲线的几何性质,注意焦点的位置从而设出双曲线的标准方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\left\{\begin{array}{l}{e^x},x≥0\\ ax,x<0\end{array}$若方程f(-x)=f(x)有五个不同的实根,则实数a的取值范围(  )
A.(1,+∞)B.(e,+∞)C.(-∞,-1)D.(-∞,-e)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1的一条渐近线过点(2,1),则双曲线的离心率为$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如果10N的力能使弹簧压缩0.1m,为在弹性限度内将弹簧从平衡位置拉到离平衡位置0.06m处,则克服弹力所做的功为(  )
A.0.28JB.0.12JC.0.26JD.0.18J

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数$f(x)=\frac{1}{2}a{x^2}+lnx+bx$,其中a,b∈R.
(1)当b=1时,g(x)=f(x)-x在$x=\frac{{\sqrt{2}}}{2}$处取得极值,求函数f(x)的单调区间;
(2)若a=0时,函数f(x)有两个不同的零点x1,x2
①求b的取值范围;
②求证:$\frac{{{x_1}{x_2}}}{e^2}>1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.cos$(\frac{-13π}{4})$的值为(  )
A.$-\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{2}}}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在数列{an}中,a1=2,an+1=$\frac{{a}_{n}}{1+{a}_{n}}$(n∈N+),
(1)计算a2、a3、a4并由此猜想通项公式an
(2)证明(1)中的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=1+2sin(2x-\frac{π}{3})$.
(1)用五点法作图作出f(x)在x∈[0,π]的图象;
(2)求f(x)在$x∈[\frac{π}{4},\frac{π}{2}]$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.将曲线$y=2sin(x+\frac{π}{3})$上所有点的横坐标伸长为原来的3倍,纵坐标不变,得到的曲线方程为(  )
A.$y=2sin(3x+\frac{π}{3})$B.y=2sin(3x+π)C.$y=2sin(\frac{1}{3}x+\frac{π}{3})$D.$y=2sin(\frac{1}{3}x+\frac{π}{9})$

查看答案和解析>>

同步练习册答案