11£®ÒÑÖª¶¨µãF1£¨-1£¬0£©£¬F2£¨1£¬0£©£¬¶¯µãPÂú×ã|$\overrightarrow{P{F}_{1}}$|+|$\overrightarrow{P{F}_{2}}$|=6£¬¶¯µãP¹ì¼£ÎªÇúÏßC£®
£¨1£©ÇóÇúÏßCµÄ·½³Ì£»
£¨2£©ÈôÇúÏßCÓëxÖáµÄ½»µãΪA1£¬A2£¬µãMÊÇÇúÏßCÉÏÒìÓÚµãA1£¬A2µÄµã£¬Ö±ÏßA1MÓëA2MµÄбÂÊ·Ö±ðΪk1£¬k2£¬Çók1k2µÄÖµ£»
£¨3£©¹ýµãQ£¨2£¬0£©×÷Ö±ÏßlÓëÇúÏßC½»ÓÚA£¬BÁ½µã£®ÔÚÇúÏßCÉÏÊÇ·ñ´æÔÚµãN£¬Ê¹$\overrightarrow{OA}$+$\overrightarrow{OB}$=$\overrightarrow{ON}$£¿Èô´æÔÚ£¬ÇëÇó³öÖ±ÏßlµÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÔËÓÃÍÖÔ²µÄ¶¨Òå¿ÉµÃÇúÏßCΪÒÔF1£¬F2Ϊ½¹µã£¬ÇÒ2a=6£¬¼´a=3£¬c=1£¬¿ÉµÃb£¬½ø¶øµÃµ½ÇúÏßCµÄ·½³Ì£»
£¨2£©¿ÉµÃA1£¨-3£¬0£©£¬A2£¨3£¬0£©£¬ÉèM£¨m£¬n£©£¬´úÈëÍÖÔ²·½³Ì£¬ÔÙÓÉÖ±ÏßµÄбÂʹ«Ê½£¬»¯¼òÕûÀí¼´¿ÉµÃµ½ËùÇóÖµ£»
£¨3£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÓÉÌâÒâÖªlµÄбÂÊÒ»¶¨²»Îª0£¬¹Ê²»·ÁÉèl£ºx=my+2£®´úÈëCµÄ·½³Ì²¢ÕûÀíµÃµ½¸ùÓëϵÊýµÄ¹Øϵ£»¼ÙÉè´æÔÚµãN£¬Ê¹$\overrightarrow{OA}$+$\overrightarrow{OB}$=$\overrightarrow{ON}$³ÉÁ¢?µãNµÄ×ø±ê£¨x1+x2£¬y1+y2£©Âú×ãÍÖÔ²µÄ·½³Ì£®ÓÖA¡¢BÔÚÍÖÔ²ÉÏ£¬¼´Âú×ãÍÖÔ²µÄ·½³Ì£®¿ÉµÃ8x1x2+9y1y2+36=0£¬´úÈë½âµÃm£¬¼´¿ÉµÃµ½µãNµÄ×ø±êºÍÖ±ÏßlµÄ·½³Ì£®

½â´ð ½â£º£¨1£©¶¯µãPÂú×ã|$\overrightarrow{P{F}_{1}}$|+|$\overrightarrow{P{F}_{2}}$|=6£¬
¶øF1£¨-1£¬0£©£¬F2£¨1£¬0£©µÄ¾àÀëΪ2£¼6£¬
ÓÉÍÖÔ²µÄ¶¨Òå¿ÉµÃPµÄ¹ì¼£ÎªÒÔF1£¬F2Ϊ½¹µã£¬
ÇÒ2a=6£¬¼´a=3£¬c=1£¬b=$\sqrt{{a}^{2}-{c}^{2}}$=2$\sqrt{2}$£¬
¼´ÓÐÇúÏßCµÄ·½³ÌΪ$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{8}$=1£»
£¨2£©ÓÉÌâÒâ¿ÉµÃA1£¨-3£¬0£©£¬A2£¨3£¬0£©£¬
ÉèM£¨m£¬n£©£¬¼´ÓÐ$\frac{{m}^{2}}{9}$+$\frac{{n}^{2}}{8}$=1£¬
ÓÖk1=$\frac{n}{m+3}$£¬k2=$\frac{n}{m-3}$£¬
k1k2=$\frac{{n}^{2}}{{m}^{2}-9}$=8£¨1-$\frac{{m}^{2}}{9}$£©•$\frac{1}{{m}^{2}-9}$=-$\frac{8}{9}$£»
£¨3£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÓÉÌâÒâÖªlµÄбÂÊÒ»¶¨²»Îª0£¬¹Ê²»·ÁÉèl£ºx=my+2£®
´úÈëCµÄ·½³Ì£¬²¢ÕûÀíµÃ£¨8m2+9£©y2+32my-40=0£¬ÏÔÈ»¡÷£¾0£®
ÓÉΤ´ï¶¨ÀíÓУºy1+y2=-$\frac{32m}{9+8{m}^{2}}$£¬y1y2=-$\frac{40}{9+8{m}^{2}}$£¬¢Ù
¼ÙÉè´æÔÚµãN£¬Ê¹$\overrightarrow{OA}$+$\overrightarrow{OB}$=$\overrightarrow{ON}$³ÉÁ¢£¬
ÔòÆä³äÒªÌõ¼þΪ£ºµãNµÄ×ø±êΪ£¨x1+x2£¬y1+y2£©£¬
µãNÔÚÍÖÔ²ÉÏ£¬¼´$\frac{£¨{x}_{1}+{x}_{2}£©^{2}}{9}$+$\frac{£¨{y}_{1}+{y}_{2}£©^{2}}{8}$=1£®
ÕûÀíµÃ£¨8x12+9y12£©+£¨8x22+9y22£©+16x1x2+18y1y2=72£®
ÓÖA¡¢BÔÚÍÖÔ²ÉÏ£¬¼´8x12+9y12=72£¬8x22+9y22=72£¬
¹Ê8x1x2+9y1y2+36=0£¬¢Ú
½«x1x2=£¨my1+2£©£¨my2+2£©
=m2y1y2+2m£¨y1+y2£©+4¼°¢Ù´úÈë¢Ú£¬
¿ÉµÃ£¨8m2+9£©•£¨-$\frac{40}{9+8{m}^{2}}$£©+16m•£¨-$\frac{32m}{9+8{m}^{2}}$£©+68=0£¬
½âµÃm2=$\frac{7}{8}$£¬¼´ÓÐy1+y2=¡À$\frac{\sqrt{14}}{2}$£¬x1+x2=4-$\frac{32{m}^{2}}{9+8{m}^{2}}$=$\frac{9}{4}$£®
¹Ê´æÔÚµãN£¨¡À$\frac{\sqrt{14}}{2}$£¬$\frac{9}{4}$£©£¬Ê¹$\overrightarrow{OA}$+$\overrightarrow{OB}$=$\overrightarrow{ON}$£®
´ËʱֱÏßlµÄ·½³ÌΪx=¡À$\frac{\sqrt{14}}{4}$y+2£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ¶¨ÒåºÍ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâת»¯Îª·½³ÌÁªÁ¢µÃµ½¸ùÓëϵÊýµÄ¹Øϵ¡¢ÏòÁ¿µÄÔËËã¡¢Á½µã¼äµÄ¾àÀ빫ʽµÈ»ù±¾ÖªÊ¶Óë»ù±¾¼¼ÄÜ£¬¿¼²éÁË·ÖÀàÌÖÂÛµÄ˼Ïë·½·¨¡¢ÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®¹ýµãM£¨3£¬-1£©ÇÒ±»µãMƽ·ÖÅ×ÎïÏßy2=4xµÄÏÒËùÔÚµÄÖ±Ïß·½³Ì2x+y-5=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÈôF1£¬F2ÊÇÍÖÔ²$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1µÄÁ½¸ö½¹µã£¬¹ýF1µÄÖ±Ïß½»ÍÖÔ²ÓÚA£¬BÁ½µã£®
£¨1£©Çó¡÷ABF2µÄÖܳ¤£»
£¨2£©Çó¡÷ABF2µÄÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èçͼ£¬¡÷ABCµÄÍâ½ÓÔ²µÄÇÐÏßAEÓëBCµÄÑÓ³¤ÏßÏཻÓÚµãE£¬¡ÏBACµÄƽ·ÖÏßÓëBCÏཻÓÚµãD£¬ÇóÖ¤£º
£¨1£©EA=ED£»
£¨2£©DB•DE=DC•BE£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®º¯Êýy=loga£¨x+1£©£¨a£¾0ÇÒa¡Ù1£©µÄͼÏóºã¹ýµãΪ£¨¡¡¡¡£©
A£®£¨1£¬0£©B£®£¨0£¬1£©C£®£¨-1£¬0£©D£®£¨0£¬0£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÔÚ¡÷ABCÖУ¬¡ÏBAC=$\frac{2¦Ð}{3}$£¬AB=2£¬AC=3£¬DΪBC±ßÉϵÄÖе㣬$\overrightarrow{CE}$=2$\overrightarrow{EB}$£¬Ôò$\overrightarrow{AD}$•$\overrightarrow{AE}$=$\frac{4}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖªÊýÁÐ{an}ÖУ¬a1=1£¬an+1=an£¨1-nan+1£©£¬ÔòÊýÁÐ{an}µÄͨÏʽΪ£¨¡¡¡¡£©
A£®an=$\frac{{n}^{2}-n+2}{2}$B£®an=$\frac{{n}^{2}-n+1}{2}$C£®an=$\frac{2}{{n}^{2}-n+1}$D£®an=$\frac{2}{{n}^{2}-n+2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÒÑÖªx£¾0£¬y£¾0£¬ÇÒ$\frac{1}{x}$+$\frac{2}{y}$=1£¬Ôòx+4yµÄ×îСֵÊÇ9+2$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®¼Ç²»µÈʽ×é$\left\{\begin{array}{l}{x+y-4¡Ü0}\\{3x-2y+3¡Ý0}\\{x-4y+1¡Ü0}\end{array}\right.$£¬Ëù±íʾµÄÇøÓòΪD£®
£¨1£©ÇóÇøÓòDµÄÃæ»ý£®
£¨2£©ÉèP£¨x£¬y£©ÎªÇøÓòÄÚÒ»¶¯µã£¬Çóz=$\frac{y-2}{x+4}$µÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸