·ÖÎö £¨1£©ÔËÓÃÍÖÔ²µÄ¶¨Òå¿ÉµÃÇúÏßCΪÒÔF1£¬F2Ϊ½¹µã£¬ÇÒ2a=6£¬¼´a=3£¬c=1£¬¿ÉµÃb£¬½ø¶øµÃµ½ÇúÏßCµÄ·½³Ì£»
£¨2£©¿ÉµÃA1£¨-3£¬0£©£¬A2£¨3£¬0£©£¬ÉèM£¨m£¬n£©£¬´úÈëÍÖÔ²·½³Ì£¬ÔÙÓÉÖ±ÏßµÄбÂʹ«Ê½£¬»¯¼òÕûÀí¼´¿ÉµÃµ½ËùÇóÖµ£»
£¨3£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÓÉÌâÒâÖªlµÄбÂÊÒ»¶¨²»Îª0£¬¹Ê²»·ÁÉèl£ºx=my+2£®´úÈëCµÄ·½³Ì²¢ÕûÀíµÃµ½¸ùÓëϵÊýµÄ¹Øϵ£»¼ÙÉè´æÔÚµãN£¬Ê¹$\overrightarrow{OA}$+$\overrightarrow{OB}$=$\overrightarrow{ON}$³ÉÁ¢?µãNµÄ×ø±ê£¨x1+x2£¬y1+y2£©Âú×ãÍÖÔ²µÄ·½³Ì£®ÓÖA¡¢BÔÚÍÖÔ²ÉÏ£¬¼´Âú×ãÍÖÔ²µÄ·½³Ì£®¿ÉµÃ8x1x2+9y1y2+36=0£¬´úÈë½âµÃm£¬¼´¿ÉµÃµ½µãNµÄ×ø±êºÍÖ±ÏßlµÄ·½³Ì£®
½â´ð ½â£º£¨1£©¶¯µãPÂú×ã|$\overrightarrow{P{F}_{1}}$|+|$\overrightarrow{P{F}_{2}}$|=6£¬
¶øF1£¨-1£¬0£©£¬F2£¨1£¬0£©µÄ¾àÀëΪ2£¼6£¬
ÓÉÍÖÔ²µÄ¶¨Òå¿ÉµÃPµÄ¹ì¼£ÎªÒÔF1£¬F2Ϊ½¹µã£¬
ÇÒ2a=6£¬¼´a=3£¬c=1£¬b=$\sqrt{{a}^{2}-{c}^{2}}$=2$\sqrt{2}$£¬
¼´ÓÐÇúÏßCµÄ·½³ÌΪ$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{8}$=1£»
£¨2£©ÓÉÌâÒâ¿ÉµÃA1£¨-3£¬0£©£¬A2£¨3£¬0£©£¬
ÉèM£¨m£¬n£©£¬¼´ÓÐ$\frac{{m}^{2}}{9}$+$\frac{{n}^{2}}{8}$=1£¬
ÓÖk1=$\frac{n}{m+3}$£¬k2=$\frac{n}{m-3}$£¬
k1k2=$\frac{{n}^{2}}{{m}^{2}-9}$=8£¨1-$\frac{{m}^{2}}{9}$£©•$\frac{1}{{m}^{2}-9}$=-$\frac{8}{9}$£»
£¨3£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÓÉÌâÒâÖªlµÄбÂÊÒ»¶¨²»Îª0£¬¹Ê²»·ÁÉèl£ºx=my+2£®
´úÈëCµÄ·½³Ì£¬²¢ÕûÀíµÃ£¨8m2+9£©y2+32my-40=0£¬ÏÔÈ»¡÷£¾0£®
ÓÉΤ´ï¶¨ÀíÓУºy1+y2=-$\frac{32m}{9+8{m}^{2}}$£¬y1y2=-$\frac{40}{9+8{m}^{2}}$£¬¢Ù
¼ÙÉè´æÔÚµãN£¬Ê¹$\overrightarrow{OA}$+$\overrightarrow{OB}$=$\overrightarrow{ON}$³ÉÁ¢£¬
ÔòÆä³äÒªÌõ¼þΪ£ºµãNµÄ×ø±êΪ£¨x1+x2£¬y1+y2£©£¬
µãNÔÚÍÖÔ²ÉÏ£¬¼´$\frac{£¨{x}_{1}+{x}_{2}£©^{2}}{9}$+$\frac{£¨{y}_{1}+{y}_{2}£©^{2}}{8}$=1£®
ÕûÀíµÃ£¨8x12+9y12£©+£¨8x22+9y22£©+16x1x2+18y1y2=72£®
ÓÖA¡¢BÔÚÍÖÔ²ÉÏ£¬¼´8x12+9y12=72£¬8x22+9y22=72£¬
¹Ê8x1x2+9y1y2+36=0£¬¢Ú
½«x1x2=£¨my1+2£©£¨my2+2£©
=m2y1y2+2m£¨y1+y2£©+4¼°¢Ù´úÈë¢Ú£¬
¿ÉµÃ£¨8m2+9£©•£¨-$\frac{40}{9+8{m}^{2}}$£©+16m•£¨-$\frac{32m}{9+8{m}^{2}}$£©+68=0£¬
½âµÃm2=$\frac{7}{8}$£¬¼´ÓÐy1+y2=¡À$\frac{\sqrt{14}}{2}$£¬x1+x2=4-$\frac{32{m}^{2}}{9+8{m}^{2}}$=$\frac{9}{4}$£®
¹Ê´æÔÚµãN£¨¡À$\frac{\sqrt{14}}{2}$£¬$\frac{9}{4}$£©£¬Ê¹$\overrightarrow{OA}$+$\overrightarrow{OB}$=$\overrightarrow{ON}$£®
´ËʱֱÏßlµÄ·½³ÌΪx=¡À$\frac{\sqrt{14}}{4}$y+2£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ¶¨ÒåºÍ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâת»¯Îª·½³ÌÁªÁ¢µÃµ½¸ùÓëϵÊýµÄ¹Øϵ¡¢ÏòÁ¿µÄÔËËã¡¢Á½µã¼äµÄ¾àÀ빫ʽµÈ»ù±¾ÖªÊ¶Óë»ù±¾¼¼ÄÜ£¬¿¼²éÁË·ÖÀàÌÖÂÛµÄ˼Ïë·½·¨¡¢ÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£®
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | £¨1£¬0£© | B£® | £¨0£¬1£© | C£® | £¨-1£¬0£© | D£® | £¨0£¬0£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | an=$\frac{{n}^{2}-n+2}{2}$ | B£® | an=$\frac{{n}^{2}-n+1}{2}$ | C£® | an=$\frac{2}{{n}^{2}-n+1}$ | D£® | an=$\frac{2}{{n}^{2}-n+2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com