精英家教网 > 高中数学 > 题目详情
3.已知函数$f(x)=\left\{\begin{array}{l}{x^2}-2x\;,\;\;x≥0\\{x^2}+2x\;,\;\;x<0\end{array}\right.$.
(1)画出y=f(x)的图象,并写出单调递增区间;
(2)根据图象讨论关于x的方程f(x)=m的实根的个数.

分析 (1)根据函数奇偶性得出该函数的对称性,可以先画出该函数在(0,+∞)上的图象,利用对称性得出该函数在整个定义域上的图象;根据图象观察得出函数的单调增区间;
(2)通过讨论m的范围,结合函数f(x)的图象求出关于x的方程f(x)=m的实根的个数.

解答 解:(1)函数f(x)的定义域是R,
函数$f(x)=\left\{\begin{array}{l}{x^2}-2x\;,\;\;x≥0\\{x^2}+2x\;,\;\;x<0\end{array}\right.$,即f(x)=x2-2|x|,
而f(-x)=(-x)2-2|-x|═x2-2|x|=f(x),
故该函数是偶函数,故其图象关于y轴对称,
当x≥0时,y=x2-2x,先画出该部分的图象,
利用对称性得出该函数的完整的图象.
据图象写出该函数的单调递增区间为:(-1,0),(1,+∞);
(2)由(1)得:f(x)的最小值是f(1)=f(-1)=-1,
故m<-1时,关于x的方程f(x)=m,无实数根,
m=-1时,关于x的方程f(x)=m,2个实数根,
-1<m<0时,关于x的方程f(x)=m,4个实数根,
m=0时,关于x的方程f(x)=m,3个实数根,
m>0时,关于x的方程f(x)=m,2个实数根.

点评 本题考查函数奇偶性的应用问题,考查函数奇偶性的判断方法,考查函数图象的作法,考查数形结合思想和等价转化思想,考查函数的零点问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{\begin{array}{l}-{x^2}-ax-5,(x≤1)\\ \frac{a}{x}(x>1)\end{array}$是R上的增函数,则a的取值范围是(  )
A.{a|-3≤a<0}B.{a|a≤-2}C.{a|a<0}D.{a|-3≤a≤-2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}中,已知a1=1,${a_{n+1}}=\frac{a_n}{{1+2{a_n}}}$,
(1)求证数列$\left\{{\frac{1}{a_n}}\right\}$是等差数列;  
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.计算:${log_{\sqrt{2}}}4+{e^{ln3}}+{({0.125})^{-\frac{2}{3}}}$=11.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x2-2ax+a+2,a∈R.
(1)若方程f(x)=0有两个小于2的不等实根,求实数a的取值范围;
(2)若不等式f(x)≥-1-ax对任意x∈R恒成立,求实数a的取值范围;
(3)若函数f(x)在[0,2]上的最大值为4,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.三条两两相交的直线可确定1或3个平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的虚轴长为2,焦距为2$\sqrt{3}$,求双曲线的渐近线方程并求以双曲线焦点和顶点分别为顶点和焦点的椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,a,b,c分别为A,B,C的对边,已知a,b,c成等比数列,a2-c2=ac+bc,a=6,则 $\frac{b}{sinB}$=(  )
A.12B.$6\sqrt{2}$C.$4\sqrt{3}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.M(x0,y0)为圆x2+y2=a2(a>0)内异于圆心的一点,则直线x0x+y0y-a2=0与该圆的位置关系是(  )
A.相切B.相交C.相离D.相切或相交

查看答案和解析>>

同步练习册答案