精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
2-xx+1

(1)证明:函数f(x)在(-1,+∞)上为减函数;
(2)是否存在负数x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,请说明理由.
分析:(1)可用函数的单调性定义证明,也可以用导数来证明;
(2)假设存在,则利用指数函数的值域得到f(x0)的范围,构造关于x0的不等式,解得看是否符合条件.
解答:解:(1)任取x1,x2∈(-1,+∞),且x1<x2(1分)
f(x1)-f(x2)=
2-x1
x1+1
-
2-x2
x2+1
=
3x2-3x1
(x1+1)(x2+1)
>0
(4分)
∴函数f(x)在(-1,+∞)上为减函数(1分)
(2)不存在(1分)
假设存在负数x0,使得f(x0)=3x0成立,(1分)
则∵x0<0,∴0<3x0<1(1分)
即0<f(x0)<1∴0<
2-x0
x0+1
<1
(1分)
-1<x0<2
-2x0+1
x0+1
<0
=>
-1<x0<2
x0<-1或x0
1
2
=
1
2
x0<2
(2分)
与x0<0矛盾,(1分)
所以不存在负数x0,使得f(x0)=3x0成立.(1分)
另:f(x)=-1+
3
x+1

由x0<0得:f(x0)<-1或f(x0)>2但0<3x0<1
所以不存在.
点评:单调性证明一般有定义法和导数法,存在性问题一般先假设存在,解出矛盾则不存在,否则就存在.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2-xx+1

(1)求出函数f(x)的对称中心;
(2)证明:函数f(x)在(-1,+∞)上为减函数;
(3)是否存在负数x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x-1,x≤0
x
,x>0
,则f[f(-2)]=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函数f(x)的值域和最小正周期;
(2)当x∈[0,2π]时,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2-
ax+1
(a∈R)
的图象过点(4,-1)
(1)求a的值;
(2)求证:f(x)在其定义域上有且只有一个零点;
(3)若f(x)+mx>1对一切的正实数x均成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],则当x=
3
3
时,函数f(x)有最大值,最大值为
2
3
2
3

查看答案和解析>>

同步练习册答案