精英家教网 > 高中数学 > 题目详情
10.设函数f(x)=ex+g(x).若曲线y=g(x)在点P(0,g(0))处的切线方程是y=2x+1,则曲线y=f(x)在点Q(0,f(0))处的切线方程是(  )
A.y=2x+1B.y=2x+3C.y=x+2D.y=3x+2

分析 由题意,g′(0)=2,g(0)=1,可得f′(0)=e0+g′(0)=3,f(0)=2,即可求出曲线y=f(x)在点Q(0,f(0))处的切线方程.

解答 解:由题意,g′(0)=2,g(0)=1,
∴f′(0)=e0+g′(0)=3,f(0)=2,
∴曲线y=f(x)在点Q(0,f(0))处的切线方程是y=3x+2.
故选:D.

点评 本题考查导数知识的综合运用,考查导数的几何意义,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.设数列{an}的前n项和为Sn,且(n+1)Sn=(n-1)an+1+2n+2,n∈N*,a2=8.
(1)求a1,a3
(2)求数列{an}的通项公式an
(3)设bn=$\frac{{n}^{2}}{{a}_{n}}$-$\frac{{2}^{2n+5}}{{a}_{n+1}{a}_{n+2}}$,数列{bn}的前n和为Tn
①求Tn
②求正整数k,使得对任意n∈N*,均有Tn≤TK

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若点(16,tanθ)在函数y=log2x的图象上,则$\frac{sin2θ}{{{{cos}^2}θ}}$=(  )
A.2B.4C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2c,则$\frac{b+c}{a}$的取值范围为(1,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知数列{an}的通项公式为an=n2cosnπ,Sn为它的前n项和,则$\frac{{S}_{2010}}{2011}$=1005.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,在平面直角坐标系xOy中,A是椭圆G:$\frac{{x}^{2}}{4}$+y2=1的左顶点,过点P(2,-1)任意作一条直线l与椭圆G交于C,D,记直线AC,AD的斜率分别为k1,k2,则$\frac{1}{{k}_{1}}$+$\frac{1}{{k}_{2}}$的值为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.等差数列{an}中,已知a1+a4+a7=39,a3+a6+a9=27,求a2+a8=(  )
A.11B.22C.33D.44

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=tanωx(ω>0)的图象的相邻两个零点的距离为$\frac{π}{2}$,则$f(\frac{π}{6})$的值是(  )
A.-$\sqrt{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知圆Cn的半径为rn(n=1,2,3,…),它们均与大小为θ(θ为锐角)的定角∠AOB的两边OA、OB相切,且CnCn+1相切.又rn+1<rn,r1=1,设这些圆的面积依次为S1,S2,…,Sn,…,且$\underset{lim}{n→∞}$(S1+S2+…+Sn)=$\frac{9π}{8}$,则θ=$\frac{π}{3}$.

查看答案和解析>>

同步练习册答案