精英家教网 > 高中数学 > 题目详情
19.某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的是4$\sqrt{7}$

分析 作出直观图,分别计算四个面的面积,得出答案.

解答 解:由三视图可知该几何体是个底面是正三角形,棱AD⊥底面BCD的三棱锥,如图.其中AD=4,BD=4,取BC的中点F,
则DF=2$\sqrt{3}$,AF=$\sqrt{A{D}^{2}+D{F}^{2}}$=2$\sqrt{7}$,
∴S△ABC=$\frac{1}{2}×BC×AF$=4$\sqrt{7}$,S△BCD=$\frac{\sqrt{3}}{4}×B{D}^{2}$=4$\sqrt{3}$,S△ABD=$\frac{1}{2}×BD×AD$=8,S△ACD=$\frac{1}{2}×CD×AD$=8,
故答案为4$\sqrt{7}$.

点评 本题考查了常见几何体的三视图和体积计算,作出直观图可方便计算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.若$\overrightarrow{OD}$+$\overrightarrow{OE}$=$\overrightarrow{OM}$,试着判断下列结论是否正确.
(1)$\overrightarrow{OM}$-$\overrightarrow{OE}$=$\overrightarrow{OD}$;
(2)$\overrightarrow{OM}$+$\overrightarrow{DO}$=$\overrightarrow{OE}$;
(3)$\overrightarrow{OD}$+$\overrightarrow{EO}$=$\overrightarrow{OM}$;
(4)$\overrightarrow{DO}$+$\overrightarrow{EO}$=$\overrightarrow{MO}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数g(x)=x3+x,若g(3a-2)+g(a+4)>0,则实数a的取值范围是a>-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知命题p:x1,x2是方程x2-mx-1=0的两个实根,且不等式a2+4a-3≤|x1-x2|对任意m∈R恒成立;命题q:不等式x2+2x+a<0有解,若命题p∨q为真,p∧q为假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若loga(3a-2)是正数,则实数a的取值范围是$({\frac{2}{3},1})∪({1,+∞})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦点分别为F1、F2,P为椭圆上一点,连接PF1交y轴于点Q,若△PQF2为等边三角形,则椭圆C的离心率为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设二次函数f(x)在[-1,4]上的最大值为12,且关于x的不等式f(x)<0的解集为(0,5).
(1)求f(x)的解析式;
(2)若$g(x)=3sin(2x+\frac{π}{6}),x∈[0,\frac{π}{2}]$,求函数h(x)=f(g(x))的值域;
(3)若对任意的实数x都有f(2-2cosx)<f(1-cosx-m)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若sinαcosα=0,则sin4α+cos4α=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)与g(x)的图象拼成如图所示的“Z”字形折线段ABOCD,不含A(0,1),B(1,1),O(0,0),C(-1,-1),D(0,-1)五个点,若f(x)的图象关于原点对称的图形即为g(x)的图象,则其中一个函数的解析式可以为f(x)=$\left\{\begin{array}{l}{x,-1<x<0}\\{1,0<x<1}\end{array}\right.$.

查看答案和解析>>

同步练习册答案