精英家教网 > 高中数学 > 题目详情
已知数列{an}是等比数列,若a2a3a4=64,
a6a8
=16,则(
1
4
-2×2-3-(a5 
1
3
=(  )
A、4
B、0
C、0或-4
D、-
255
128
考点:等比数列的性质
专题:等差数列与等比数列
分析:由等比数列的性质易得a3=4,a7=16,可得q2=2,可得a5=a3q2=8,代入要求的式子计算可得.
解答: 解:由等比数列的性质可得a33=a2a3a4=64,
∴a3=4,由等比数列隔项同号可得a7=
a6a8
=16,
解得a3=4,a7=16,∴公比q满足q4=
a7
a3
=4,解得q2=2,
∴a5=a3q2=4×2=8,
∴(
1
4
-2×2-3-(a5 
1
3
=16×
1
8
-2=0
故选:B
点评:本题考查等比数列的性质,涉及指数幂的运算,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

点P是抛物线y2=4x上的动点,点Q为圆x2+(y-4)2=1上的动点,若P点到y轴的距离为d,则|PQ|+d的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan(θ+
π
4
)=
1
2
,则sinθcosθ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,已知a2=1,前n项和为Sn,且Sn=
n(an-a1)
2
.(其中n∈N*
(1)求数列{an}的通项公式;
(2)求
lim
n→+∞
Sn
n2

(3)设lgbn=
an+1
3n
,问是否存在正整数p、q(其中1<p<q),使得b1,bp,bq成等比数列?若存在,求出所有满足条件的数组(p,q);否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
sinα0
0-
2
cosβ
为单位矩阵,且α、β∈[
π
2
,π]
,则tan(α+β)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

以原点为圆心的两个同心圆的方程分别为x2+y2=4和x2+y2=1,过原点O的射线交大圆于点P,交小圆于点Q,作PM⊥x轴于M,若
PN
PM
QN
PM
=0.
(1)求点N的轨迹方程;
(2)过点A(-3,0)的直线l与(1)中的点N的轨迹交于E,F两点,设B(1,0),求
BE
BF
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xoy中,动点P与定点F(1,0)的距离和它到定直线x=2的距离之比是
2
2

(Ⅰ)求动点P的轨迹Γ的方程;
(Ⅱ)设曲线Γ上的三点A(x1,y1),B(1,
2
2
),C(x2,y2)与点F的距离成等差数列,线段AC的垂直平分线与x轴的交点为T,求直线BT的斜率k.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a2+b2+c2=1,a,b,c是实数,则3ab-3bc+2c2的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=|x|-1,x∈{-2,-1,0,1,2}的值域为
 

查看答案和解析>>

同步练习册答案