【题目】三棱柱中,为的中点,点在侧棱上,平面.
(1)证明:是的中点;
(2)设,四边形为正方形,四边形为矩形,且异面直线与所成的角为30°,求两面角的余弦值.
【答案】(1)见解析;(2)二面角的余弦值为.
【解析】
(1)取的中点,利用中位线得出利用线面平行的判定,得出平面,利用面面平行的判定得出平面平面进而得出而为的中点,所以为的中点。
(2)建立直角坐标系,设,,利用异面直线与所成的角为30°,求出进而求出二面角的余弦值。
(1)证明:取的中点,连、,因为为中点,所以.
平面,平面,平面.
又由已知平面,
且,所以平面平面.
又平面,所平面.
而平面,且平面平面,所以,而为的中点,所以为的中点.
(2)由题设知:、、两两垂直,以为轴,为轴,为轴,建立空间直角坐标系.
设,,则,,,,,
所以,.因为异面直线与所成的角为30°,
所以 ,解得:,于是.
设平面的法向量为,因为,
所以,取,则,所以.
又是平面的一个法向量,所以,
即二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】某地区不同身高的未成年男性的体重平均值如下表:
身高x(cm) | 60 | 70 | 80 | 90 | 100 | 110 | 120 | 130 | 140 |
体重y(kg) | 6.13 | 7.90 | 9.99 | 12.15 | 15.02 | 17.50 | 20.92 | 26.86 | 31.11 |
已知与之间存在很强的线性相关性,
(Ⅰ)据此建立与之间的回归方程;
(Ⅱ)若体重超过相同身高男性体重平均值的倍为偏胖,低于倍为偏瘦,那么这个地区一名身高体重为 的在校男生的体重是否正常?
参考数据:
附:对于一组数据,其回归直线 中的斜率和截距的最小二乘估计分别为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知的内角、、的对边分别为、、,为内一点,若分别满足下列四个条件:
①;
②;
③;
④;
则点分别为的( )
A.外心、内心、垂心、重心B.内心、外心、垂心、重心
C.垂心、内心、重心、外心D.内心、垂心、外心、重心
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C1:y=cos x,C2:y=sin (2x+),则下面结论正确的是( )
A. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2
B. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2
C. 把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2
D. 把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,两铁路线垂直相交于站,若已知千米,甲火车从站出发,沿方向以千米小时的速度行驶,同时乙火车从站出发,沿方向,以千米小时的速度行驶,至站即停止前行(甲车扔继续行驶)(两车的车长忽略不计).
(1)求甲、乙两车的最近距离(用含的式子表示);
(2)若甲、乙两车开始行驶到甲,乙两车相距最近时所用时间为小时,问为何值时最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设{an}是公比为 q的等比数列,且a1,a3,a2成等差数列.
(Ⅰ)求q的值;
(Ⅱ)设{bn}是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着移动互联网的发展,与餐饮美食相关的手机APP软件层出不穷.现从某市使用A和B两款订餐软件的商家中分别随机抽取100个商家,对它们的“平均送达时间”进行统计,得到频率分布直方图如下.
(1)已知抽取的100个使用A款订餐软件的商家中,甲商家的“平均送达时间”为18分钟。现从使用A款订餐软件的商家中“平均送达时间”不超过20分钟的商家中随机抽取3个商家进行市场调研,求甲商家被抽到的概率;
(2)试估计该市使用A款订餐软件的商家的“平均送达时间”的众数及平均数;
(3)如果以“平均送达时间”的平均数作为决策依据,从A和B两款订餐软件中选择一款订餐,你会选择哪款?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com