精英家教网 > 高中数学 > 题目详情

【题目】选修44:极坐标与参数方程

已知在平面直角坐标系xOyO为坐标原点曲线C (α为参数)在以平面直角坐标系的原点为极点x轴的正半轴为极轴取相同单位长度的极坐标系直线lρ.

()求曲线C的普通方程和直线l的直角坐标方程;

()曲线C上恰好存在三个不同的点到直线l的距离相等分别求出这三个点的极坐标

【答案】(Ⅰ)见解析;(Ⅱ)见解析.

【解析】试题分析: (1)消去参数α,即可得到曲线C的普通方程,利用极坐标与直角坐标互化求出直线l的直角坐标方程;

(2)求出圆的圆心与半径,求出三个点的坐标,然后求解极坐标.

试题解析:

(Ⅰ)曲线

可得:

曲线C的普通方程:x2y2=4.

直线lρsin=1=ρsin θρcos θ

直线l的直角坐标方程:xy-2=0.

(Ⅱ)∵圆C的圆心(0,0)半径为2,,圆心C到直线的距离为1,

∴这三个点在平行直线l1l2上,如图:直线l1l2l的距离为1.

l1xy=0,l2xy-4=0.

,可得

两个交点(-,1)、(,-1);

解得(1,),

这三个点的极坐标分别为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点在圆上, 的坐标分别为 ,线段的垂直平分线交线段于点

1)求点的轨迹的方程;

2)设圆与点的轨迹交于不同的四个点,求四边形的面积的最大值及相应的四个点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为常数, 为自然对数的底数.

1)若在区间上的最大值为,求的值;

2)当时,判断方程是否有实根?若无实根请说明理由,若有实根请给出根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋子里有编号为的五个球,某位教师从袋中任取两个不同的球. 教师把所取两球编号的和只告诉甲,其乘积只告诉乙,让甲、乙分别推断这两个球的编号.

甲说:我无法确定.”

乙说:我也无法确定.”

甲听完乙的回答以后,甲又说:我可以确定了.”

根据以上信息, 你可以推断出抽取的两球中

A. 一定有3号球 B. 一定没有3号球 C. 可能有5号球 D. 可能有6号球

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】园林管理处拟在公园某区域规划建设一半径为米,圆心角为(弧度)的扇形观景水池,其中 为扇形的圆心,同时紧贴水池周边(即: 所对的圆弧)建设一圈理想的无宽度步道.要求总预算费用不超过24万元,水池造价为每平方米400元,步道造价为每米1000元.

(1)若总费用恰好为24万元,则当分别为多少时,可使得水池面积最大,并求出最大面积;

(2)若要求步道长为105米,则可设计出的水池最大面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到表格:(单位:人)

经常使用

偶尔或不用

合计

30岁及以下

70

30

100

30岁以上

60

40

100

合计

130

70

200

(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?

(2)现从所抽取的30岁以上的网友中利用分层抽样的方法再抽取5人.

(i)分别求这5人中经常使用、偶尔或不用共享单车的人数;

(ii)从这5人中,再随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.

参考公式: ,其中.

参考数据:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的方程为 为常数).

(1)判断曲线的形状;

(2)设曲线分别与轴, 轴交于点 不同于原点),试判断的面积是否为定值?并证明你的判断;

(3)设直线 与曲线交于不同的两点 ,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=-f′(0)ex+2x,点P为曲线y=f(x)在点(0,f(0))处的切线l上的一点,点Q在曲线y=ex上,则|PQ|的最小值为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了部分几口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探,由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用,勘探初期数据资料见如表:

(参考公式和计算结果:

(1)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为,求的值,并估计的预报值.

(2)现准备勘探新井,若通过1,3,5,7号并计算出的 的值( 精确到0.01)相比于(1)中的 ,值之差不超过10%,则使用位置最接近的已有旧井,否则在新位置打开,请判断可否使用旧井?

(3)设出油量与勘探深度的比值不低于20的勘探井称为优质井,那么在原有6口井中任意勘探4口井,求勘探优质井数的分布列与数学期望.

查看答案和解析>>

同步练习册答案