【题目】选修4-4:极坐标与参数方程
已知在平面直角坐标系xOy中,O为坐标原点,曲线C: (α为参数),在以平面直角坐标系的原点为极点,x轴的正半轴为极轴,取相同单位长度的极坐标系,直线l:ρ.
(Ⅰ)求曲线C的普通方程和直线l的直角坐标方程;
(Ⅱ)曲线C上恰好存在三个不同的点到直线l的距离相等,分别求出这三个点的极坐标.
【答案】(Ⅰ)见解析;(Ⅱ)见解析.
【解析】试题分析: (1)消去参数α,即可得到曲线C的普通方程,利用极坐标与直角坐标互化求出直线l的直角坐标方程;
(2)求出圆的圆心与半径,求出三个点的坐标,然后求解极坐标.
试题解析:
(Ⅰ)曲线,
可得:
曲线C的普通方程:x2+y2=4.
直线l:ρsin=1=ρsin θ+ρcos θ,
直线l的直角坐标方程:x+y-2=0.
(Ⅱ)∵圆C的圆心(0,0)半径为2,,圆心C到直线的距离为1,
∴这三个点在平行直线l1与 l2上,如图:直线l1与 l2与l的距离为1.
l1:x+y=0,l2:x+y-4=0.
,可得
两个交点(-,1)、(,-1);
解得(1,),
这三个点的极坐标分别为:、、.
科目:高中数学 来源: 题型:
【题目】已知点在圆上, 的坐标分别为, ,线段的垂直平分线交线段于点
(1)求点的轨迹的方程;
(2)设圆与点的轨迹交于不同的四个点,求四边形的面积的最大值及相应的四个点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中为常数, 为自然对数的底数.
(1)若在区间上的最大值为,求的值;
(2)当时,判断方程是否有实根?若无实根请说明理由,若有实根请给出根的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋子里有编号为的五个球,某位教师从袋中任取两个不同的球. 教师把所取两球编号的和只告诉甲,其乘积只告诉乙,让甲、乙分别推断这两个球的编号.
甲说:“我无法确定.”
乙说:“我也无法确定.”
甲听完乙的回答以后,甲又说:“我可以确定了.”
根据以上信息, 你可以推断出抽取的两球中
A. 一定有3号球 B. 一定没有3号球 C. 可能有5号球 D. 可能有6号球
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】园林管理处拟在公园某区域规划建设一半径为米,圆心角为(弧度)的扇形观景水池,其中, 为扇形的圆心,同时紧贴水池周边(即: 和所对的圆弧)建设一圈理想的无宽度步道.要求总预算费用不超过24万元,水池造价为每平方米400元,步道造价为每米1000元.
(1)若总费用恰好为24万元,则当和分别为多少时,可使得水池面积最大,并求出最大面积;
(2)若要求步道长为105米,则可设计出的水池最大面积是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到表格:(单位:人)
经常使用 | 偶尔或不用 | 合计 | |
30岁及以下 | 70 | 30 | 100 |
30岁以上 | 60 | 40 | 100 |
合计 | 130 | 70 | 200 |
(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?
(2)现从所抽取的30岁以上的网友中利用分层抽样的方法再抽取5人.
(i)分别求这5人中经常使用、偶尔或不用共享单车的人数;
(ii)从这5人中,再随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.
参考公式: ,其中.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线的方程为(, 为常数).
(1)判断曲线的形状;
(2)设曲线分别与轴, 轴交于点, (, 不同于原点),试判断的面积是否为定值?并证明你的判断;
(3)设直线: 与曲线交于不同的两点, ,且,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=-f′(0)ex+2x,点P为曲线y=f(x)在点(0,f(0))处的切线l上的一点,点Q在曲线y=ex上,则|PQ|的最小值为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了部分几口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探,由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用,勘探初期数据资料见如表:
(参考公式和计算结果:
, , , )
(1)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为,求的值,并估计的预报值.
(2)现准备勘探新井,若通过1,3,5,7号并计算出的, 的值(, 精确到0.01)相比于(1)中的, ,值之差不超过10%,则使用位置最接近的已有旧井,否则在新位置打开,请判断可否使用旧井?
(3)设出油量与勘探深度的比值不低于20的勘探井称为优质井,那么在原有6口井中任意勘探4口井,求勘探优质井数的分布列与数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com