精英家教网 > 高中数学 > 题目详情

已知动点的轨迹是曲线,满足点到点的距离与它到直线的距离之比为常数,又点在曲线上.

(1)求曲线的方程;

(2)已知直线与曲线交于不同的两点,求实数的取值范围.

(1).(2)得,且


解析:

(1)设,且(常数)

在曲线上,

整理,得

(2)由

解得,且

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点C(4,0)和直线l:x=1,P是动点,作PQ⊥l,垂足为Q,且(
PC
+2
PQ
)•(
PC
-2
PQ
)=0
,设P点的轨迹是曲线M.
(1)求曲线M的方程;
(2)点O是坐标原点,是否存在斜率为1的直线m,使m与M交于A、B两点,且
CB
=2
OA
若存在,求出直线m的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

 在平面直角坐标系中,动点到定点的距离比它到轴的距离大,设动点的轨迹是曲线.

(1)求曲线的轨迹方程;

(2) 设直线:与曲线相交于两点,已知圆经过原点两点,求圆的方程,并判断点关于直线的对称点是否在圆上.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省分校高二12月月考理科数学试卷(解析版) 题型:解答题

(本题10分)已知,动点满足,设动点的轨迹是曲线,直线与曲线交于两点.(1)求曲线的方程;

(2)若,求实数的值;

(3)过点作直线垂直,且直线与曲线交于两点,求四边形面积的最大值.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)

已知是双曲线的左、右焦点,动点的距离之和为,设动点的轨迹是曲线

(1)求曲线的方程;

(2)设直线与曲线相交于两点,求面积最大时的直线的方程;

(3)设点,点是曲线上的两点,,求实数的取值范围。

查看答案和解析>>

同步练习册答案