精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xoy中,设二次函数f(x)=x2+2x+b(x∈R)的图象与两坐标轴有三个不同的交点.经过这三个交点的圆记为C.
(I)求实数b的取值范围;
(II)求圆C的一般方程;
(III)圆C是否经过某个定点(其坐标与b无关)?若存在,请求出点的坐标;若不存在,请说明理由.
(I)令x=0得抛物线与y轴交点是(0,b);令f(x)=x2+2x+b,由题意b≠0,
且△=4-4b>0,解得b<1,且b≠0.
即实数b的取值范围 {b|b<1,且b≠0 }.
(II)设所求圆的一般方程为x2+y2+Dx+Ey+F=0,则此圆和坐标轴有3个交点,
即f(x)=x2+2x+b(x∈R)的图象与两坐标轴的三个交点.
令y=0得,x2+Dx+F=0,由题意可得,这与x2+2x+b=0是同一个方程,故D=2,F=b.
令x=0得,y2+Ey+F=0,由题意可得,此方程有一个根为b,代入此方程得出E=-b-1,
所以圆C的一般方程为x2+y2+2x-(b+1)y+b=0.
(III)圆C过定点(0,1)和(-2,1). 证明如下:
法1,直接将点的坐标代入验证,可得点(0,1)和(-2,1)的坐标是
圆的方程x2+y2+2x-(b+1)y+b=0 的解,
故圆C过定点(0,1)和(-2,1).
法2,圆C的方程改写为x2+y2+2x-y-b(y-1)=0,令
x2+y2+2x-y=0
y=1

解得
x=0
y=1
x=-2
y=1
,故圆C 过定点(0,1)和(-2,1).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

圆心为(1,1)且与直线x+y=4相切的圆的方程是(  )
A.(x-1)2+(y-1)2=2B.(x-1)2+(y-1)2=4
C.(x+1)2+(y+1)2=2D.(x+1)2+(y+1)2=4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

圆心是(1,-2),半径是4的圆的标准方程是(  )
A.(x-1)2+(y+2)2=4B.(x-1)2+(y+2)2=16
C.(x+1)2+(y-2)2=4D.(x+1)2+(y-2)2=16

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系xOy中,以坐标原点O为圆心的圆与直线:x-
3
y=4
相切.
(1)求圆O的方程;
(2)若圆O上有两点M、N关于直线x+2y=0对称,且|MN|=2
3
,求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求圆心在l1:y-3x=0上,与x轴相切,且被直线l2:x-y=0截得弦长为4
7
的圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

我们把形如y=
b
|x|-a
(a>0,b>0)
的函数称为“莫言函数”,并把其与y轴的交点关于原点的对称点称为“莫言点”,以“莫言点”为圆心,凡是与“莫言函数”图象有公共点的圆,皆称之为“莫言圆”.当a=1,b=1时,在所有的“莫言圆”中,面积的最小值______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若两条直线y=x+2a,y=2x+a的交点P在圆(x-1)2+(y-1)2=4的内部,则实数a的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆M的圆心在直线x-2y+4=0上,且与x轴交于两点A(-5,0),B(1,0).
(Ⅰ)求圆M的方程;
(Ⅱ)求过点C(1,2)的圆M的切线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设M是圆x2+y2-2x-2y+1=0上的点,则M到直线3x+4y-22=0的最长距离是______,最短距离是______.

查看答案和解析>>

同步练习册答案