精英家教网 > 高中数学 > 题目详情
函数f(x)=ex-ex的单调增区间为
 
考点:利用导数研究函数的单调性
专题:导数的综合应用
分析:求出函数的导数,令f′(x)≤0,解出即可.
解答: 解:函数f(x)=ex-ex
则f′(x)=ex-e,
令f′(x)>0,解得x>1.
∴f(x)的单调减区间为(1,∞).
故答案为:(1,+∞).
点评:本题考查了利用导数研究函数的单调性,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果实数x、y满足条件
x-y+1≥0
y+1≥0
x+y+1≤0
,那么z=4x•2-y的最大值为(  )
A、1
B、2
C、
1
2
D、
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设复数z1=1+i,z2=2+xi,(x∈R),若z1•z2∈R,则x的值等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={3,5,6,8},B={1,3,5},那么A∪B等于(  )
A、{1,3,5,6,8}
B、{6,8}
C、{3,5}
D、{1,6,8}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知2sinα-cosα=0,求
1+2sin(π-α)cos(-2π-α)
sin2(-α)-sin2(
5
2
π-α)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,DC垂直平面ABC,∠BAC=90°,AC=
1
2
BC=kCD,点E在BD上,且BE=3ED.
(1)求证:AE⊥BC;
(2)若二面角B-AE-C的大小为120°,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
5
3
,设其左、右焦点分别为F1,F2,上顶点为B1,且F2到直线B1F1的距离为
4
5
3

(Ⅰ)求椭圆的方程;
(Ⅱ)过点(2,0)作直线与椭圆交于A,B两点,O是坐标原点,是否存在这样的直线,使得|
OA
+
OB
|=|
OA
-
OB
|?若存在,求出直线的方程,若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+
1-x
a(1+x)
,其中a为不为零的常数.
(Ⅰ)若f(x)在点(1,0)处的切线过点(2,-1),求实数a的值;
(Ⅱ)当a=1时,若存在x1,x2∈[1,e2]使得f(x1)-f(x2)≥M成立,求满足条件的最大整数M;
(Ⅲ)若f(x)无极值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四面体ABCD的每条棱长都等于2,点E,F分别为棱AB,AD的中点,则|
AB
+
BC
|=
 
,|
BC
-
EF
|=
 
EF
AC
所成的角为
 

查看答案和解析>>

同步练习册答案