精英家教网 > 高中数学 > 题目详情

【题目】在正三棱柱ABC﹣A1B1C1中,AB=1,BB1=2,求:
(1)异面直线B1C1与A1C所成角的大小;
(2)四棱锥A1﹣B1BCC1的体积.

【答案】
(1)解:∵正三棱柱ABC﹣A1B1C1,∴B1C1∥BC,

∴∠BCA1是异面直线B1C1与A1C所成角,

在△BCA1中,BC=1,

∴cos∠BCA1= =

∴异面直线B1C1与A1C所成角大小为arccos


(2)解:∵正三棱柱ABC﹣A1B1C1中,AB=1,BB1=2,

=SABCAA1=

∴四棱锥A1﹣B1BCC1的体积V= =


【解析】(1)由B1C1∥BC,知∠BCA1是异面直线B1C1与A1C所成角,由此能求出异面直线B1C1与A1C所成角大小.(2)四棱锥A1﹣B1BCC1的体积V= ,由此能求出结果.
【考点精析】根据题目的已知条件,利用异面直线及其所成的角的相关知识可以得到问题的答案,需要掌握异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设f'(x)是函数f(x)的导数,f'(x)是函数f'(x)的导数,若方程f'(x)=0有实数解x0 , 则称点(x0 , f(x0))为函数f(x)的拐点.某同学经过探究发现:任何一个三次函数f(x)=ax3+bx2+cx+d(a≠0)都有拐点,任何一个三次函数都有对称中心,且拐点就是对称中心,
设函数g(x)=x3﹣3x2+4x+2,利用上述探究结果
计算: =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的组合体中,三棱柱ABC﹣A1B1C1的侧面ABB1A1是圆柱的轴截面,C是圆柱底面圆周上不与A、B重合的一个点.
(Ⅰ)若圆柱的轴截面是正方形,当点C是弧AB的中点时,求异面直线A1C与AB1的所成角的大小;
(Ⅱ)当点C是弧AB的中点时,求四棱锥A1﹣BCC1B1与圆柱的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数g(x)=ax2﹣2ax+1+b(a>0)在区间[2,3]上的最大值为4,最小值为1,记f(x)=g(|x|),x∈R;
(1)求实数a、b的值;
(2)若不等式 对任意x∈R恒成立,求实数k的范围;
(3)对于定义在[p,q]上的函数m(x),设x0=p,xn=q,用任意xi(i=1,2,…,n﹣1)将[p,q]划分成n个小区间,其中xi1<xi<xi+1 , 若存在一个常数M>0,使得不等式|m(x0)﹣m(x1)|+|m(x1)﹣m(x2)|+…+|m(xn1)﹣m(xn)|≤M恒成立,则称函数m(x)为在[p,q]上的有界变差函数,试证明函数f(x)是在[1,3]上的有界变差函数,并求出M的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆C: 过点M(2,0),且右焦点为F(1,0),过F的直线l与椭圆C相交于A,B两点.设点P(4,3),记PA,PB的斜率分别为k1和k2

(1)求椭圆C的方程;
(2)如果直线l的斜率等于﹣1,求出k1k2的值;
(3)探讨k1+k2是否为定值?如果是,求出该定值;如果不是,求出k1+k2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·上海)设z1, z2C, ,则“z1, z2中至少有一个数是虚数”是“z1-z2是虚数”的( )
A.充分非必要条件
B.必要非充分条件
C.充要条件
D.既非充分又非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·湖南)设,且,证明
(1)
(2)不可能同时成立

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设曲线y=xn+1(n∈N+)在点(1,1)处的切线与x轴的交点的横坐标为xn , 则log2015x1+log2015x2+…+log2015x2014的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=(x2﹣3)ex(其中x∈R,e是自然对数的底数),当t1>0时,关于x的方程[f(x)﹣t1][f(x)﹣t2]=0恰好有5个实数根,则实数t2的取值范围是(
A.(﹣2e,0)
B.(﹣2e,0]
C.[﹣2e,6e3]
D.(﹣2e,6e3

查看答案和解析>>

同步练习册答案