精英家教网 > 高中数学 > 题目详情
10.已知f(x2)的定义域为[-$\frac{1}{2}$,2],则y=f(x)的定义域为[0,4].

分析 根据复合函数定义域之间的关系进行求解即可.

解答 解:∵(x2)的定义域为[-$\frac{1}{2}$,2],
∴-$\frac{1}{2}$≤x≤2,
则0≤x2≤4,
即函数y=f(x)的定义域为[0,4],
故答案为:[0,4]

点评 本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件以及复合函数定义域之间的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.三条直线3x+2y+6=0,2x-3m2y+18=0和2mx-3y+12=0围成三角形,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知两个向量$\overrightarrow{a}$=(2cosx,sin2x),$\overrightarrow{b}$=(2sinx,cos2x)(x∈R),并且f(x)=|$\overrightarrow{a}$|-|$\overrightarrow{b}$|,那么f(x)的最大值为(  )
A.1B.2C.3.6D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某城市出租车白天计费规定:3公里起价8元,3公里后每公里1.8元,超出10公里每公里2.7元,另外每车次还要付2元燃油附加费.
(1)设公里数为n(公里),记付费为y(元),写出函数y=f(x)的表达式;
(2)若遇堵车停车等待规定:2分30秒跳0.9元,某人白天打车13公里,中途停车等待5分钟,应付费多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.锐角α,β满足$\frac{sinβ}{sinα}$=cos(α+β),α+β≠$\frac{π}{2}$,求tanβ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若圆C:(x+a)2+y2=4上恰有两个点到原点的距离为1,则实数a的取值范围是0<a<2$\sqrt{2}$或-2$\sqrt{2}$<a<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知全集S={1,3x3+3x2,-3x},集合A={1,|2x-1|},如果{x|x∈S,x∉A}={0},则这样的实数x是否存在?若存在,求出x,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=sinx-cosx,x∈R
(1)求函数f(x)的单调递减区间
(2)设θ∈[0,$\frac{π}{2}$],且f(θ)=$\frac{1}{5}$,求cos2θ

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.命题“?x∈Z,x2∈Z”的否定是(  )
A.?x0∉Z,x02∉ZB.?x0∈Z,x02∉ZC.?x∉Z,x2∉ZD.?x∈Z,x2∉Z

查看答案和解析>>

同步练习册答案