精英家教网 > 高中数学 > 题目详情

【题目】已知直线与抛物线切于点,直线过定点Q,且抛物线上的点到点Q的距离与其到准线距离之和的最小值为.

1)求抛物线的方程及点的坐标;

2)设直线与抛物线交于(异于点P)两个不同的点AB,直线PAPB的斜率分别为,那么是否存在实数,使得?若存在,求出的值;若不存在,请说明理由.

【答案】1,(12);(2)存在,

【解析】

1)由直线恒过点点及抛物线C上的点到点Q的距离与到准线的距离之和的最小值为,求出抛物线的方程,再由直线与抛物线相切,即可求得切点的坐标;

2)直线与抛物线方程联立,利用根与系数的关系,求得直线PAPB的斜率,求出斜率之和为定值,即存在实数使得斜率之和为定值.

1)由题意,直线变为2x+1-m(2y+1)=0,所以定点Q的坐标为

抛物线的焦点坐标

由抛物线C上的点到点Q的距离与到其焦点F的距离之和的最小值为

可得,解得(舍去),

故抛物线C的方程为

又由消去y

因为直线与抛物线C相切,所以,解得

此时,所以点P坐标为(12

2)设存在满足条件的实数,点

联立,消去x

依题意,可得,解得m<-1

由(1)知P12),

可得

同理可得

所以

=

故存在实数=满足条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】光伏发电是利用太阳能电池及相关设备将太阳光能直接转化为电能,近几年在国内出台的光伏发电补贴政策的引导下,某地光伏发电装机量急剧上涨,如下表:

年份

2011

2012

2013

2014

2015

2016

2017

2018

年份代码

1

2

3

4

5

6

7

8

新增光伏装机量兆瓦

0.4

0.8

1.6

3.1

6.1

7.1

9.7

12.2

某位同学分别用两种模型:①进行拟合,得到相应的回归方程并进行残差分析,残差图如下(注:残差等于

经过计算得,其中.

1)根据残差图,比较模型①,②的拟合效果,应该选择哪个模型?并简要说明理由.

2)根据(1)的判断结果及表中数据建立关于的回归方程,并预测该地区2020年新增光伏装机量是多少.(在计算回归系数时精确到0.01

附:归直线的斜率和截距的最小二乘估计公式分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某一电视台对年龄高于40岁和不高于40岁的人是否喜欢西班牙队进行调查,40岁以上调查了50人,不高于40岁调查了50人,所得数据制成如下列联表:

不喜欢西班牙队

喜欢西班牙队

总计

40岁以上

50

不高于40

15

35

50

总计

100

已知工作人员从所有统计结果中任取一个,取到喜欢西班牙队的人的概率为,则有超过________的把握认为年龄与西班牙队的被喜欢程度有关.

参考公式与临界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.702

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题:

经过定点的直线都可以用方程表示;

经过定点的直线都可以用方程表示;

不经过原点的直线都可以用方程表示;

经过任意两个不同的点的直线都可以用方程表示,

其中真命题的个数为(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面底面.分别是的中点,求证:

(Ⅰ)底面

(Ⅱ)平面

(Ⅲ)平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为美化城市环境,相关部门需对一半圆形中心广场进行改造出新,为保障市民安全,施工队对广场进行围挡施工如图,围挡经过直径的两端点A,B及圆周上两点C,D围成一个多边形ABPQR,其中AR,RQ,QP,PB分别与半圆相切于点A,D,C,B.已知该半圆半径OA30米,∠COD60°,设∠BOC

(1)求围挡内部四边形OCQD的面积;

(2)为减少对市民出行的影响,围挡部分面积要尽可能小求该围挡内部多边形ABPQR面积的最小值?并写出此时的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)x2(x1)|xa|.

(1)a=-1,解方程f(x)1

(2)若函数f(x)R上单调递增,求实数a的取值范围;

(3)是否存在实数a,使不等式f(x)≥2x3对任意xR恒成立?若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了分析某个高三学生的学习状态,对其下一阶段的学习提供指导性建议.现对他前7次考试的数学成绩、物理成绩进行分析.下面是该生7次考试的成绩.

数学

88

83

117

92

108

100

112

物理

94

91

108

96

104

101

106

(1)他的数学成绩与物理成绩哪个更稳定?请给出你的证明;

(2)已知该生的物理成绩与数学成绩是线性相关的,若该生的物理成绩达到115分,请你估计他的数学成绩大约是多少?并请你根据物理成绩与数学成绩的相关性,给出该生在学习数学、物理上的合理建议.

参考公式:方差公式:,其中为样本平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的展开式中第5项与第7项的二项数系数相等,且展开式的各项系数之和为1024,则下列说法正确的是(

A.展开式中奇数项的二项式系数和为256

B.展开式中第6项的系数最大

C.展开式中存在常数项

D.展开式中含项的系数为45

查看答案和解析>>

同步练习册答案