精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(1)判断f(x)的单调性;
(2)记φ(x)=f′(x-1)-k(x-1),若函数φ(x)有两个零点x1,x2(x1<x2),求证:数学公式

(1)解:函数定义域为(-1,+∞),f'(x)=x-ln(x+1),
记g(x)=x-ln(x+1),(3分)
当x∈(-1,0)时,g'(x)<0,g(x)在(-1,0)递减,
当x∈(0,+∞)时,g'(x)>0,g(x)在(0,+∞)递增,
∴x∈(-1,+∞),g(x)≥0,
即当x∈(-1,+∞),f'(x)≥0,
∴f(x)在(-1,+∞)递增 (6分)
(2)证明:由(1)可知φ(x)=x-1-lnx-k(x-1),
由题意:x1-1-lnx1-k(x1-1)=0,x2-1-lnx2-k(x2-1)=0,
两式相减得:,即有
又因为,所以(9分)
现考察
,设,则
所以γ(t)在t∈(0,1)递增,所以γ(t)<γ(1)=0,
又因为x1-x2<0,所以(13分)
分析:(1)确定函数的定义域,确定导数的正负,可得f(x)的单调性;
(2)利用函数φ(x)有两个零点x1,x2(x1<x2),两式相减,求出φ(x)=f′(x-1)-k(x-1)的导函数,确定单调性,即可证得结论.
点评:本题考查导数知识的运用,考查函数的单调性,考查学生分析解决问题的能力,有一定的难度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数

  (1)判断f(x)的奇偶性; (2)解关于x的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数

(1)判断f(x)在上的单调性,并证明你的结论;

(2)若集合A={y | y=f(x),},B=[0,1], 试判断A与B的关系;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数数学公式
(1)判断f(x)的奇偶性并给予证明;
(2)求满足f(x)≥0的实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省盐城市田家炳中学高三(上)期中数学试卷(解析版) 题型:解答题

已知函数
(1)判断f(x)在[1,+∞)上的单调性,并证明你的结论;
(2)若集合A={y|y=f(x),},B=[0,1],试判断A与B的关系;
(3)若存在实数a、b(a<b),使得集合{y|y=f(x),a≤x≤b}=[ma,mb],求非零实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖南省五市十校高三第一次联考数学试卷(理科)(解析版) 题型:解答题

已知函数
(1)判断f(x)的单调性;
(2)记φ(x)=f′(x-1)-k(x-1),若函数φ(x)有两个零点x1,x2(x1<x2),求证:

查看答案和解析>>

同步练习册答案