精英家教网 > 高中数学 > 题目详情
15.已知集合M={x|log3x≤1},N={x|x2+x-2≤0},则M∩N等于(  )
A.{x|-2≤x≤1}B.{x|1≤x≤3}C.{x|0<x≤1}D.{x|0<x≤3}

分析 化简集合M、N,根据交集的定义写出M∩N即可.

解答 解:集合M={x|log3x≤1}={x|0<x≤3},
N={x|x2+x-2≤0}={x|-2≤x≤1},
则M∩N={x|0<x≤1}.
故选:C.

点评 本题考查了集合的化简与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知实数a,b,c均大于0.
(1)求证:$\sqrt{ab}$+$\sqrt{bc}$+$\sqrt{ca}$≤a+b+c;
(2)若a+b+c=1,求证:$\frac{2ab}{a+b}+\frac{2bc}{b+c}+\frac{2ac}{a+c}$≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若等差数列{an}的前7项和S7=21,且a2=-1,则a6=7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知$\overrightarrow{a}$=(x+1,2),$\overrightarrow{b}$=(4,-7),且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为锐角,则x的取值范围为($\frac{5}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在平面直角坐标系xoy中,A,B,C均为⊙O上的点,其中A($\frac{3}{5}$,$\frac{4}{5}$),C(1,0),点B在第二象限.
(1)设∠COA=θ,求tan2θ的值;
(2)若△AOB为等边三角形,求点B的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=lg(-x)+$\frac{1}{x}$的零点所在区间为(  )
A.(-$\frac{1}{2}$,0)B.(-3,-2)C.(-2,-1)D.(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知样本数据a1,a2,a3,a4,a5的方差s2=$\frac{1}{5}$(a12+a22+a32+a42+a52-80),则样本数据2a1+1,2a2+1,2a3+1,2a4+1,2a5+1的平均数为9或-7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,四边形OABC是边长为1的正方形,OD=3,点P为△BCD内(含边界)的动点,则|$\overrightarrow{OA}$+$\overrightarrow{OP}$|的取值范围为(  )
A.[$\frac{2\sqrt{10}}{5}$,5]B.[$\sqrt{2}$,4]C.[$\sqrt{2}$,$\sqrt{5}$]D.[$\frac{2\sqrt{10}}{5}$,4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,|$\overrightarrow{a}$-$\overrightarrow{b}$|=2.
(1)求$\overrightarrow{a}$•$\overrightarrow{b}$的值;
(2)求|$\overrightarrow{a}$+$\overrightarrow{b}$|的值.
(3)求$\overrightarrow{a}$在$\overrightarrow{b}$上的投影.

查看答案和解析>>

同步练习册答案