精英家教网 > 高中数学 > 题目详情

(Ⅰ)判断函数f(x)的单调性;
(Ⅱ)是否存在实数a、使得关于x的不等式lnx<a(x-1)在(1,+∞)上恒成立,若存在,求出a的取值范围,若不存在,试说明理由;
【答案】分析:(1)对f(x)求导后,构造新的函数g(x),利用导数求解函数单调的方法步骤进行求解.
(2)根据已知lnx<a(x-1)在(1,+∞)上恒成立等价于lnx-a(x-1)<0在(1,+∞)上恒成立,构造新的函数h(x)=lnx-a(x-1),本题所要求的a的取值范围,只需满足一个条件:使得h(x)在定义域内为减函数即可.
解答:证明:(1)∵



∴y=g(x)在[1,+∞)上为减函数.

∴,
∴函数在(1,+∞)上为减函数.
(2)lnx<a(x-1)在(1,+∞)上恒成立,?lnx-a(x-1)<0在(1,+∞)上恒成立,
设h(x)=lnx-a(x-1),则h(1)=0,

若a≤0显然不满足条件,
若a≥1,则x∈[1,+∞)时,恒成立,
∴h(x)=lnx-a(x-1)在[1,+∞)上为减函数
∴lnx-a(x-1)<h(1)=0在(0,+∞)上恒成立,
∴lnx<a(x-1)在(1,+∞)上恒成立,
若0<a<1,则时,
时h'(x)≥0,
∴h(x)=lnx-a(x-1)在上为增函数,
时,h(x)=lnx-a(x-1)>0,
不能使lnx<a(x-1)在(1,+∞)上恒成立,
∴a≥1
点评:本题考查利用导数研究函数的单调性问题,这一道题的新颖之处是构造新的函数,这也是教学中的重点和难点,希望在平时多加练习,掌握要领.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=log
1
2
x+1
x-1

(1)判断函数f(x)的奇偶性,并证明;
(2)证明函数f(x)在(1,+∞)上是增函数;
(3)若x∈[3,+∞)时,不等式f(x)>(
1
2
)x+m
恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=log 
1
2
1-ax
x-1
(a为常数)的图象关于原点对称
(1)求a的值;
(2)判断函数f(x)在区间(1,+∞)的单调性并证明;
(3)若对于区间[3,4]上的每一个x的值,f(x)>(
1
2
x+m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•金山区一模)设a为实数,函数f(x)=x|x-a|,其中x∈R.
(1)判断函数f(x)的奇偶性,并加以证明;
(2)写出函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:044

(1)试判断函数f(x)的单调性,并给出证明:

(2)解关于x的不等式

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:044

(1)试判断函数f(x)的单调性,并给出证明:

(2)解关于x的不等式

查看答案和解析>>

同步练习册答案