精英家教网 > 高中数学 > 题目详情

【题目】某研究型学习小组调查研究高中生使用智能手机对学习的影响,部分统计数据如下:

使用智能手机

不使用智能手机

合计

学习成绩优秀

学习成绩不优秀

合计

(1)根据以上统计数据,你是否有 的把握认为使用智能手机对学习有影响?

(2)为了进一步了解学生对智能手机的使用习惯,现在对以上使用智能手机的高中时采用分层抽样的方式,抽取一个容量为 的样本,若抽到的学生中成绩不优秀的比成绩优秀的多 人,求 的值.

【答案】(1)有;(2).

【解析】分析:(1) 根据所给的数据做出这组数据的观测值,把观测值同临界值进行比较,得到该研究小组有99.5%的把握认为中学生使用智能手机对学习有影响;(2)根据分层抽样原则易得 的值.

详解:(1),所以有99.5%的把握认为二者有关;

(2).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1中,AC=AA1=2,AB=BC=2 ,∠AA1C1=60°,平面ABC1⊥平面AA1C1C,AC1与A1C相交于点D.

(1)求证:BC1⊥平面AA1C1C;
(2)求二面角C1﹣AB﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴,建立极坐标系,若直线l的参数方程为 (t为参数,α为l的倾斜角),曲线E的极坐标方程为ρ=4sinθ.射线θ=β,θ=β+ ,θ=β﹣ 与曲线E分别交于不同于极点的三点A、B、C.
(1)求证:|OB|+|OC|= |OA|;
(2)当β= 时,直线l过B、C两点,求y0与α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x∈R|x2+4x=0},B={x∈R|x2+2(a+1)xa2-1=0,a∈R},若BA,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,等腰梯形ABCD的底角A等于60°.直角梯形ADEF所在的平面垂直于平面 ABCD,∠EDA=90°,且ED=AD=2AF=2AB=2.

(Ⅰ)证明:平面ABE⊥平面EBD;
(Ⅱ)点M在线段EF上,试确定点M的位置,使平面MAB与平面ECD所成的角的余弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax(lnx﹣1)﹣x2(a∈R)恰有两个极值点x1 , x2 , 且x1<x2 . (Ⅰ)求实数a的取值范围;
(Ⅱ)若不等式lnx1+λlnx2>1+λ恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于下列说法正确的是(
A.若f(x)是奇函数,则f(x)是单调函数
B.命题“若x2﹣x﹣2=0,则x=1”的逆否命题是“若x≠1,则x2﹣x﹣2=0”
C.命题p:?x∈R,2x>1024,则¬p:?x0∈R,
D.命题“?x∈(﹣∞,0),2x<x2”是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】Sn为等比数列的前n项和,已知S2=2,S3=-6.

(1)求的通项公式;

(2)求Sn,并判断Sn+1SnSn+2是否成等差数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分分)

已知圆,过点作直线交圆两点.

)当经过圆心时,求直线的方程.

)当直线的倾斜角为时,求弦的长.

)求直线被圆截得的弦长时,求以线段为直径的圆的方程.

查看答案和解析>>

同步练习册答案