精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=loga$\frac{x-2}{x+2}(a>0$且a≠1).
(1)求f(x)的定义域;
(2)判定f(x)的奇偶性.

分析 (1)解不等式$\frac{x-2}{x+2}>0$便可得出该函数的定义域,会发现定义域关于原点对称;
(2)根据对数的运算便可求出f(-x)=-f(x),从而判断出该函数为奇函数.

解答 解:(1)解$\frac{x-2}{x+2}>0$得,x<-2,或x>2;
∴f(x)的定义域为(-∞,-2)∪(2,+∞);
(2)$f(-x)=lo{g}_{a}\frac{-x-2}{-x+2}=lo{g}_{a}\frac{x+2}{x-2}$=$-lo{g}_{a}\frac{x-2}{x+2}=-f(x)$;
∴f(x)为奇函数.

点评 考查函数定义域的概念,对数的真数大于0,解分式不等式,以及对数的运算,奇函数的定义及判断过程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.从某校2100名学生随机抽取一个30名学生的样本,样本中每个学生用于课外作业的时间(单位:min)依次为:75,80,85,65,95,100,70,55,65,75,85,110,120,80,85,80,75,90,90,95,70,60,60,75,90,95,65,75,80,80.该校的学生中作业时间超过一个半小时(含一个半小时)的频率是0.3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设等差数列{an}的前n项和为Sn,若a3=-11,a6+a10=-2,则当Sn取最小值时,n的值为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知f(x)=ax5+bx3+$\frac{c}{x}$-8,且f(2)=5,则f(-2)的值为(  )
A.-5B.21C.13D.-21

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x+l)的定义域为(1,+∞),则f(1-x)的定义域为(-∞,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.三角形的三个顶点分别为A(7,-4),B(1,1),C(-5,-7),求三角形的三个内角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:
(1)求出y与x之间的函数关系式;
(2)写出每天的利润W与销售单价x之间的函数关系式;
若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数$f(x)=\frac{x^2}{{{x^2}-9}}$,g(x)=x-3,$h(x)=\frac{3x}{x+3}$,则f(x)g(x)+h(x)=x(x≠±3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.数列{an}满足${a_1}=\frac{1}{5},{a_n}+{a_{n+1}}=\frac{6}{{{5^{n+1}}}}(n∈{N^*})$,则$\lim_{n→∞}({a_1}+{a_2}+…+{a_n})$=$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案