精英家教网 > 高中数学 > 题目详情
(理)已知数列{an}是等差数列,且a1=-2,a1+a2+a3=-12.
(1)求数列{an}的通项公式;
(2)若b1=0,bn+1=7bn+6,n∈N*,求数列{an(bn+1)}的前n项和Tn的公式.
分析:(1)由等差数列的性质结合已知可得a2,进而可得公差,可得通项公式;(2)由题意可得bn+1=7n-1,可得an(bn+1)=-2n×7n-1,由错位相减法求和可得.
解答:解:(1)由等差数列的性质可得a1+a2+a3=3a2=-12,
故可得a2=-4,故公差d=-4-(-2)=-2,
故数列{an}的通项公式为:an=-2-2(n-1)=-2n;
(2)由题意可得bn+1+1=7bn+7=7(bn+1),即
bn+1+1
bn+1
=7,
故数列{bn+1}是以b1+1=1为首项,7为公比的等比数列,
故bn+1=1×7n-1=7n-1,故an(bn+1)=-2n×7n-1
所以Tn=-2(1×70+2×71+3×72+…+n×7n-1),①
同乘以7可得:7Tn=-2(1×71+2×72+3×73+…+n×7n),②
①-②可得-6Tn=-2(1+71+72+…+7n-1-n×7n),
故可得Tn=
1
3
1-7n
1-7
-n×7n)=-
7n(6n-1)+1
18
点评:本题考查等差数列的通项公式和错位相减法求和,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理)已知数列{an}满足a1=1,an=
12
an-1+1(n≥2),
(1)求证:数列{an-2}是等比数列,并求通项an
(2)求{an}前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知数列{an},Sn是其前n项和,Sn=1-an(n∈N*),
(1)求数列{an}的通项公式;
(2)令数列{bn}的前n项和为Tn,bn=(n+1)an,求Tn
(3)设cn=
3an
(2-an)(1-an)
,数列{cn}的前n项和Rn,且Rnλ+
m
λ
(λ>0,m>0)
恒成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知数列{an}满足a1=2,前n项和为Snan+1=
pan+n-1(n为奇数)
-an-2n(n为偶数)

(1)若数列{bn}满足bn=a2n+a2n+1(n≥1),试求数列{bn}前3项的和T3
(2)若数列{cn}满足cn=a2n,试判断{cn}是否为等比数列,并说明理由;
(3)当p=
1
2
时,对任意n∈N*,不等式S2n+1≤log
1
2
(x2+3x)
都成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知数列{an}前n项和Sn=-ban+1-
1
(1+b)n
其中b是与n无关的常数,且0<b<1,若
limSn
n→∞
存在,则
limSn=
n→∞
1
1

查看答案和解析>>

同步练习册答案