若实数满足不等式组,则函数的最大值为 .
2
【解析】
试题分析:先根据约束条件画出可行域,设z=2x+y,再利用z的几何意义求最值,只需求出直线z=2x+y过可行域内的点A时,从而得到z=2x+y的最大值即可.解:先根据约束条件画出可行域,
设z=2x+y,将z的值转化为直线z=2x+y在y轴上的截距,当直线z=2x+y经过点A(1,0)时,z最大,最大值为:2.故答案为:2.
考点:线性规划问题
点评:本题只是直接考查线性规划问题,是一道较为简单的送分题.近年来高考线性规划问题高考数学考试的热点,数形结合是数学思想的重要手段之一,是连接代数和几何的重要方法.随着要求数学知识从书本到实际生活的呼声不断升高,线性规划这一类新型数学应用问题要引起重视
科目:高中数学 来源:2014届河南省安阳市高三上学期调研测试文科数学试卷(解析版) 题型:选择题
若实数满足不等式组为常数),且的最大值为12,则实数( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com