精英家教网 > 高中数学 > 题目详情
17.计算$cos(\frac{π}{2}+\frac{π}{3})+sin(-π-\frac{π}{6})$的值-$\frac{\sqrt{3}}{2}$+$\frac{1}{2}$.

分析 原式利用诱导公式化简,再利用特殊角的三角函数值计算即可得到结果.

解答 解:原式=-sin$\frac{π}{3}$+sin$\frac{π}{6}$=-$\frac{\sqrt{3}}{2}$+$\frac{1}{2}$.
故答案为:-$\frac{\sqrt{3}}{2}$+$\frac{1}{2}$

点评 此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.不等式$\frac{2-x}{x-4}≤0$的解集为(  )
A.{x|-2≤x<4}B.{x|x≤2}C.{x|x>-4}D.{x|x≤2或x>4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.阅读如图的程序框图.若输入n=1,则输出k的值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=$\frac{1}{x}$+$\sqrt{x+4}$的定义域为[-4,0)∪(0,+∞),.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.把函数y=sinx的图象上所有点向右平移$\frac{π}{3}$个单位,再将图象上所有点的横坐标缩小到原来的$\frac{1}{2}$(纵坐标不变),所得函数解析式为y=sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<0),则(  )
A.ω=2,φ=-$\frac{π}{3}$B.ω=2,φ=-$\frac{π}{6}$C.ω=$\frac{1}{2},φ=-\frac{π}{6}$D.ω=$\frac{1}{2},φ=-\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=Acos(πx+φ)(其中A>0,0<φ<π,x∈R).当x=$\frac{1}{3}$时,f(x)取得最小值-2.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设f(n)为正整数n(十进制)的各数位上的数字的立方之和,比如:f(123)=13+23+33=36.记f1(n)=f(n),fk+1(n)=f(fk(n)),k=1,2,3…,则f2015(2015)=(  )
A.92B.134C.371D.737

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=lgx+2x-4的零点在区间(n,n+1)内,则整数n的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知某单位有职工120人,男职工有90人,现采用分层抽样(按男、女分层)抽取一个样本,若已知样本中有27名男职工,则样本容量为36.

查看答案和解析>>

同步练习册答案