精英家教网 > 高中数学 > 题目详情
9.设定义在区间(-b,b)上的函数f(x)=lg$\frac{1+ax}{1-ax}$是奇函数(a,b∈R且a≠-2),则ab的取值范围是(1,$\sqrt{2}$].

分析 由题意和奇函数的定义f(-x)=-f(x)求出a的值,再由对数的真数大于零求出函数的定义域,则所给的区间应是定义域的子集,求出b的范围进而求出ab的范围.

解答 解:∵定义在区间(-b,b)内的函数f(x)=lg$\frac{1+2x}{1-ax}$是奇函数,
∴x∈(-b,b),f(-x)=-f(x),即lg$\frac{1-2x}{1+ax}$=-lg$\frac{1+2x}{1-ax}$,
∴1-a2x2=1-4x2,解得a=±2,
又∵a≠-2,∴a=2;则函数f(x)=lg$\frac{1+2x}{1-2x}$,
要使函数有意义,则$\frac{1+2x}{1-2x}$>0,即(1+2x)(1-2x)>0
解得:-$\frac{1}{2}$<x<$\frac{1}{2}$,即函数f(x)的定义域为:(-$\frac{1}{2}$,$\frac{1}{2}$),
∴(-b,b)⊆(-$\frac{1}{2}$,$\frac{1}{2}$),∴0<b≤$\frac{1}{2}$
∴ab的取值范围是(1,$\sqrt{2}$].
故答案为:(1,$\sqrt{2}$].

点评 本题考查了奇函数的定义以及求对数函数的定义域,利用子集关系求出b的范围,考查了学生的运算能力和对定义的运用能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x2+|x+1-a|,其中a为实常数.
(1)f(x)在[-$\frac{1}{2}$,$\frac{1}{2}$]单调递增,求实数a的取值范围;
(2)若存在x∈R,使不等式f(x)≤2|x-a|成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若正数x,y满足$\frac{1}{x}$+$\frac{3}{y}$=5,则4x+3y的最小值是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|=|$\overrightarrow{a}$+$\overrightarrow{b}$-$\overrightarrow{c}$|=1,则|$\overrightarrow{c}$|的最大值M=$\sqrt{3}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,AC=3,BC=5,∠ACB=120°,且D,E是边AB上的两点,满足BD=BC,AE=AC,试求△CDE的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,在四面体ABCD中,截面PQMN是正方形,且PQ∥AC,则下列命题中,错误的是(  )
A.AC⊥BDB.AC∥截面PQMN
C.AC=BDD.异面直线PM与BD所成的角为45°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知抛物线x2=2py(p>0)上一点A(xA,4)到其焦点的距离为$\frac{17}{4}$,则p=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知f(x)=ax7+bx5+cx3+dx-10,f(-1)=3,求f(1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设a、b为两条不同的直线,α为一个平面,下列命题中为真命题的是(  )
A.若a∥b,a∥α,则b∥αB.若a⊥b,a∥α,则b⊥αC.若a∥b,a⊥α,则b⊥αD.若a⊥b,a⊥α,则b∥α

查看答案和解析>>

同步练习册答案