精英家教网 > 高中数学 > 题目详情

【题目】美国对中国芯片的技术封锁,这却激发了中国“芯”的研究热潮,中国华为公司研发的两种芯片都已获得成功.该公司研发芯片已经耗费资金千万元,现在准备投入资金进行生产,经市场调查与预测,生产芯片的毛收入与投入的资金成正比,已知每投入千万元,公司获得毛收入千万元;生产芯片的毛收入(千万元)与投入的资金(千万元)的函数关系为都为常数),其图象如图所示.

1)试分别求出生产两种芯片的毛收入(千万元)与投入资金(千万元)函数关系式;

2)现在公司准备投入亿元资金同时生产两种芯片,设投入千万元生产芯片,用表示公司所获利润,当为多少时,可以获得最大利润?并求最大利润.(利润芯片毛收入芯片毛收入研发耗费资金)

【答案】1)生产两种芯片的毛收入(千万元)与投入资金(千万元)函数关系式分别为

2)当时,利润最大,最大利润为千万元.

【解析】

1)由题意得出生产种芯片的毛收入(千万元)与投入资金(千万元)函数关系式,将点的坐标代入函数的解析式,求出的值,可得出生产种芯片的毛收入(千万元)与投入资金(千万元)函数关系式;

2)由题意可得出,利用二次函数的基本性质求解即可.

1)由题意可知,生产种芯片的毛收入(千万元)与投入资金(千万元)函数关系式为

将点的坐标代入函数的解析式,得,解得

因此,生产种芯片的毛收入(千万元)与投入资金(千万元)函数关系式为

2)由题意可得

,当时,即当时,函数取得最大值,

.

因此,当时,利润最大,且最大利润为千万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,求函数的最大值;

(2)令,讨论函数的单调区间;

(3)若,正实数满足,证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,将宽和长都分别为x的两个矩形部分重叠放在一起后形成的正十字形面积为注:正十字形指的是原来的两个矩形的顶点都在同一个圆上,且两矩形长所在的直线互相垂直的图形

y关于x的函数解析式;

xy取何值时,该正十字形的外接圆面积最小,并求出其最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2axx2-3ln x,其中a∈R,为常数.

(1)若f(x)在x∈[1,+∞)上是减函数,求实数a的取值范围;

(2)若x=3是f(x)的极值点,求f(x)在x∈[1,a]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点为原点,其焦点到直线的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.

(1) 求抛物线的方程;

(2) 当点为直线上的定点时,求直线的方程;

(3) 当点在直线上移动时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且).

(1)当时,若对任意恒成立,求实数的取值范围;

(2)若,设 的导函数,判断的零点个数,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,点是函数图像的相邻的两个对称中心,且函数在区间内单调递减,则

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知倾斜角为的直线经过点.以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)写出曲线的普通方程;

(2)若直线与曲线有两个不同的交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加高二年级期末考试的学生中抽出60名学生,并统计了他们的物理成绩(成绩均为整数且满分为100分),把其中不低于50分的分成五段……后画出如下部分频率分布直方图,观察图形的信息,回答下列问题:

1)求出物理成绩低于50分的学生人数;

2)估计这次考试物理学科及格率(60分以上为及格);

3)从物理成绩不及格的学生中选x人,其中恰有一位成绩不低于50分的概率为,求此时x的值;

查看答案和解析>>

同步练习册答案