(14分) 已知二次函数为偶函数,函数的图象与直线y=x相切.
(1)求的解析式
(2)若函数上是单调减函数,那么:
①求k的取值范围;
②是否存在区间[m,n](m<n,使得在区间[m,n]上的值域恰好为[km,kn]?若存在,请求出区间[m,n];若不存在,请说明理由.科目:高中数学 来源: 题型:
(2009广东卷理)(本小题满分14分)
已知二次函数的导函数的图像与直线平行,且在处取得极小值.设.
(1)若曲线上的点到点的距离的最小值为,求的值;
(2)如何取值时,函数存在零点,并求出零点.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)已知二次函数满足条件:=,且方程=有等根。
(Ⅰ)求的解析式;
(Ⅱ)是否存在实数m、n(m<n),使的定义域和值域分别是[m,n]和[3m,3n]?如果存在,求出m、n的值;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
(满分14分)已知二次函数f(x)的二次项系数为a,且不等式f(x)>-2x的解集为(1,3).
(1)若方程f(x)+6a=0有两个相等的根,求f(x)的解析式;
(2)若f(x)的最大值为正数,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年广东省高州市高三上学期16周抽考数学文卷 题型:解答题
(本小题共14分)
已知二次函数,f(x+1)为偶函数,函数f(x)的图象与直线y=x相切.
(1)求f(x)的解析式;
(2)若函数在上是单调减函数,那么:求k的取值范围;
查看答案和解析>>
科目:高中数学 来源:2014届福建省三明市高一第一学期联合命题考试数学 题型:解答题
(本小题满分14分)
已知二次函数的图象过点,且函数对称轴方程为.
(Ⅰ)求函数的解析式;
(Ⅱ)设函数,求在区间上的最小值;
(Ⅲ)探究:函数的图象上是否存在这样的点,使它的横坐标是正整数,纵坐标是一个完全平方数?如果存在,求出这样的点的坐标;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com