精英家教网 > 高中数学 > 题目详情
已知满足,记目标函数的最大值为7,最小值为1,则 (     )
A.2B.1C.-1D.-2
D

试题分析:因为,目标函数的最大值为7,最小值为1,即纵截距分别为7,1时,取到最值。所以,画出直线x=1,x+y=4,2x+y=1,2x+y=7,观察可知,经过x+y=4与x=1的交点A(1,-1), x+y=4与2x+y=7的交点B(1,1),
,即,故-2,选D。

点评:小综合题,注意利用简单线性规划,确定a,b,c的值。简单线性规划问题的解法,“画,移,解,答”。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点在轴上.若椭圆上的点到焦点的距离之和等于4.
(1)写出椭圆的方程和焦点坐标.
(2)过点的直线与椭圆交于两点,当的面积取得最大值时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:圆过椭圆的两焦点,与椭圆有且仅有两个公共点:直线与圆相切 ,与椭圆相交于A,B两点记 
(Ⅰ)求椭圆的方程;
(Ⅱ)求的取值范围;
(Ⅲ)求的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过点且与抛物线只有一个公共点的直线有( ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过点P(1,1)的直线将圆x2+y2=4分成两段圆弧,要使这两段弧长之差最大,则该直线的方程为       

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的离心率为,两焦点分别为,点M是椭圆C上一点,的周长为16,设线段MO(O为坐标原点)与圆交于点N,且线段MN长度的最小值为.
(1)求椭圆C以及圆O的方程;
(2)当点在椭圆C上运动时,判断直线与圆O的位置关系.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的左焦点为,过点的直线交椭圆于两点.当直线经过椭圆的一个顶点时,其倾斜角恰为

(Ⅰ)求该椭圆的离心率;
(Ⅱ)设线段的中点为的中垂线与轴和轴分别交于两点,
记△的面积为,△为原点)的面积为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在原点的双曲线C的右焦点为(2,0),右顶点为
(1)求双曲线C的方程;
(2)若直线与双曲线C恒有两个不同的交点A和B,且(其中O为原点). 求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

关于直线的对称点的坐标为      

查看答案和解析>>

同步练习册答案