精英家教网 > 高中数学 > 题目详情
下列说法中,正确的有
 
 (把所有正确的序号都填上).
①“?x∈R,使2x>3“的否定是“?x∈R,使2x≤3”;
②函数y=sin(2x+
π
3
)sin(
π
6
-2x)的最小正周期是π;
③命题“函数f(x)在x=x0处有极值,则f'(x0)=0”的否命题是真命题;
④函数f(x)=2x-x2的零点有2个;
1
-1
1-x2
dx等于
π
2
考点:命题的真假判断与应用
专题:简易逻辑
分析:通过命题的否定判断①的正误;函数的周期判断②的正误;命题的否命题的真假判断③的正误;函数的零点的公式判断④的正误;定积分求出值判断⑤的正误.
解答: 解:对于①“?x∈R,使2x>3“的否定是“?x∈R,使2x≤3”,满足特称命题的否定是全称命题的形式,所以①正确;
对于②,函数y=sin(2x+
π
3
)sin(
π
6
-2x)=
1
2
sin(4x+
3
),函数的最小正周期
π
2
,所以②不正确;
对于③,命题“函数f(x)在x=x0处有极值,则f'(x0)=0”的否命题是:若f'(x0)=0,则函数f(x)在x=x0处有极值,显然不正确.利用y=x3,x=0时,导数为0,但是x=0不是函数的极值点,所以是真命题;
所以③不正确;
对于④,由题意可知:要研究函数f(x)=x2-2x的零点个数,
只需研究函数y=2x,y=x2的图象交点个数即可.画出函数y=2x,y=x2的图象,由图象可得有3个交点.
所以④不正确;
对于⑤,
1
-1
1-x2
dx的几何意义是半圆的面积,圆的面积为π,
1
-1
1-x2
dx=
π
2
.所以⑤正确;
故答案为:①⑤.
点评:本题考查命题的真假的判断与应用,考查命题的否定,零点判定定理,定积分的求法,函数的周期等知识,考查基本知识的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若x为实数,则函数y=x2+3x-5的最小值为(  )
A、-
29
4
B、-5
C、0
D、不存在

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(
3
sinωx+cosωx)cosωx-
1
2
(ω>0),其相邻两个最值点的横坐标之差为2π.
(1)求f(x)的单调递增区间;
(2)在△ABC中,角A、B、C的对边分别是a、b、c满足tanB=
3
ac
a2+c2-b2
且B为锐角,求函数f(A)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知非零向量
a
b
,若|
a
|=|
b
|=1,且
a
b
,又知(2
a
+3
b
)⊥(k
a
-4
b
),则实数k的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=px2+qx+r(p≠0,p<r),满足f(0)<0且f(-
q
2p
)>0,设△ABC的三个内角分别为A、B、C,tanA,tanB为函数f(x)的两个零点,则△ABC一定是(  )
A、锐角三角形B、直角三角形
C、钝角三角形D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,网格纸的各小格都是正方形,粗实线画出的是一个锥体的侧视图和俯视图,则该锥体的正视图可能是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

记{x}表示不超过x的最大整数,函数f(x)=
ax
1+ax
-
1
2
,在x>0时,恒有[f(x)]=0,则实数a的取值范围是(  )
A、a>1
B、0<a<1
C、a>
1
2
D、0<a<
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
x+y-1≥0
2x-y-2≤0
x-2y+2≥0
,若z=
ay
3(x+1)
的最大值为
1
8
,则a的值是(  )
A、1
B、-1
C、-
3
8
D、
3
8

查看答案和解析>>

科目:高中数学 来源: 题型:

若(x-i)i=y+2i(x,y∈R),则复数x+yi=
 

查看答案和解析>>

同步练习册答案