精英家教网 > 高中数学 > 题目详情
17.函数f(x)=Asin(ωx+φ)的单调递减区间为[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z),则下列说法错误的是(  )
A.函数f(-x)的最小正周期为π
B.函数f(-x)图象的对称轴方程为x=$\frac{π}{12}$+$\frac{kπ}{2}$(k∈Z)
C.函数f(-x)图象的对称中心为($\frac{π}{6}$+$\frac{kπ}{2}$,0)(k∈Z)
D.函数f(-x)的单调递减区间为[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$](k∈Z)

分析 由题意,ω=2,函数f(x)=Asin(ωx+φ)的周期为π,φ=$\frac{2π}{3}$,f(-x)=Asin(-2x+$\frac{2π}{3}$),再进行验证,即可得出结论.

解答 解:由题意,ω=2,函数f(x)=Asin(ωx+φ)的周期为π,
φ=$\frac{2π}{3}$,f(-x)=Asin(-2x+$\frac{2π}{3}$),
x=$\frac{π}{6}$+$\frac{kπ}{2}$,-2x+$\frac{2π}{3}$=kπ+$\frac{π}{3}$,f(-x)=Asin(-2x+$\frac{2π}{3}$)≠0,
故选C.

点评 本题考查三角函数的图象与性质,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.用锤子以均匀的力敲击铁钉入木板,随着铁钉的深入,铁钉所受的阻力会越来越大,使得每次钉入木板的钉子长度后一次为前一次的$\frac{1}{n}$(n∈N*).已知一个铁钉受击3次后全部进入木板,且第一次受击后进入木板部分的铁钉长度是钉长的$\frac{3}{5}$,请从这个实事中提炼出一个不等式组是$\left\{\begin{array}{l}{\frac{4}{7}+\frac{4}{7n}<1}\\{\frac{4}{7}+\frac{4}{7n}+\frac{4}{7{n}^{2}}≥1}\\{n∈{N}^{*}}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知O为原点,过双曲线$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)上的点P作两条渐近线的平行线,且与两渐近线的交点分别为A,B,平行四边形OBPA的面积为2,则此双曲线的渐近线方程为(  )
A.y=±$\frac{1}{4}$xB.y=±$\frac{1}{3}$xC.y=±$\frac{1}{2}$xD.y=±$\frac{\sqrt{3}}{3}$x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一次函数y=-$\frac{m}{n}$x+$\frac{1}{n}$的图象同时经过第一、二、四象限的必要不充分条件是(  )
A.mn>0B.m>1,且n>1C.m>0,且n<0D.m>0,且n>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.sin80°cos70°+sin10°sin70°=(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图所示,已知A,B是单位圆上两点且|AB|=$\sqrt{3}$,设AB与x轴正半轴交于点C,α=∠AOC,β=∠OCB,则sinαsinβ+cosαcosβ=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.直线$\sqrt{3}$x-y+3=0的倾斜角是(  )
A.30°B.45°C.60°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知sin(π+α)=$\frac{1}{2}$,则cos(α-$\frac{3}{2}$π)的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=\frac{1}{3}{x^3}-{x^2}+cx+d,({c,d∈R})$,函数f(x)的图象记为曲线C.
(1)若函数f(x)在[0,+∞)上单调递增,求c的取值范围;
(2)若函数y=f(x)-m有两个零点α,β(α≠β),且x=α为f(x)的极值点,求2α+β的值;
(3)设曲线C在动点A(x0,f(x0))处的切线l1与C交于另一点B,在点B处的切线为l2,两切线的斜率分别为k1,k2,是否存在实数c,使得$\frac{k_1}{k_2}$为定值?若存在,求出c的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案