A. | 函数f(-x)的最小正周期为π | |
B. | 函数f(-x)图象的对称轴方程为x=$\frac{π}{12}$+$\frac{kπ}{2}$(k∈Z) | |
C. | 函数f(-x)图象的对称中心为($\frac{π}{6}$+$\frac{kπ}{2}$,0)(k∈Z) | |
D. | 函数f(-x)的单调递减区间为[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$](k∈Z) |
分析 由题意,ω=2,函数f(x)=Asin(ωx+φ)的周期为π,φ=$\frac{2π}{3}$,f(-x)=Asin(-2x+$\frac{2π}{3}$),再进行验证,即可得出结论.
解答 解:由题意,ω=2,函数f(x)=Asin(ωx+φ)的周期为π,
φ=$\frac{2π}{3}$,f(-x)=Asin(-2x+$\frac{2π}{3}$),
x=$\frac{π}{6}$+$\frac{kπ}{2}$,-2x+$\frac{2π}{3}$=kπ+$\frac{π}{3}$,f(-x)=Asin(-2x+$\frac{2π}{3}$)≠0,
故选C.
点评 本题考查三角函数的图象与性质,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y=±$\frac{1}{4}$x | B. | y=±$\frac{1}{3}$x | C. | y=±$\frac{1}{2}$x | D. | y=±$\frac{\sqrt{3}}{3}$x |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | mn>0 | B. | m>1,且n>1 | C. | m>0,且n<0 | D. | m>0,且n>0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{\sqrt{3}}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -$\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com