精英家教网 > 高中数学 > 题目详情
已知平面四边形ABCD的对角线AC,BD交于点O,AC⊥BD,且BA=BC=4,DA=DC=2
3
,∠ABC=60°.现沿对角线AC将三角形DAC翻折,使得平面DAC⊥平面BAC.翻折后:
(Ⅰ)证明:AC⊥BD;
(Ⅱ)记M,N分别为AB,DB的中点.①求二面角N-CM-B大小的余弦值;②求点B到平面CMN的距离.
(Ⅰ)证明:因为AC⊥BD,且BA=BC=4,DA=DC=2
3

所以0为AC的中点,
所以AC⊥DO,AC⊥OB,所以AC⊥面BOD,所以AC⊥BD.
(II)①因为平面DAC⊥平面BAC.所以D0⊥面ABC.
以O为坐标原点,以OA,OB,OD分别为x,y,z轴建立空间坐标系,
则A(2,0,0),C(-2,0,0),B(0,2
3
,0),D(0,0,2
2
),
则M(1,
3
,0),N(0,
3
2
).则
CM
=(3,
3
,0)
MN
=(-1,0,
2
)

则平面BCM的法向量为
n
=(0,0,1)

设平面NCM的法向量为
m
=(x,y,z)
,则
MN
m
=0
CM
m
=0

-x+
2
z=0
3x+
3
y=0
,令z=
2
,则x=2,y=-2
3
.即
m
=(2,-2
3
2
)

所以cosθ=cos<
m
n
>=
m
?
n
|
m
|?|
n
|
=
2
22+(-2
3
)
2
+(
2
)
2
=
2
18
=
1
3

所以二面角N-CM-B大小的余弦值为
1
3

MB
=(-1,
3
,0)
,平面NCM的法向量为
m
=(2,-2
3
2
)

点B到平面CMN的距离d=
|
MB
?
m
|
|
m
|
=
|-2-2
3
×
3
|
22+(-2
3
)
2
+(
2
)
2
=
8
18
=
4
2
3

故点B到平面CMN的距离为
4
2
3

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PA、AB、AD两两互相垂直,BCAD,且AB=AD=2BC,E,F分别是PB、PD的中点.
(1)证明:EF平面ABCD;
(2)若PA=AB,求PC与平面PAD所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将等边三角形ABC沿中线AD对折使BD⊥AC,那么AB与平面ACD所成的角是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5AA1=4,点D是AB的中点.
(1)求证:AC⊥BC1
(2)求多面体ADC-A1B1C1的体积;
(3)求二面角D-CB1-B的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知边长为
m
的正方形ABCj沿对角线AC折成直二面角,使j到P的位置.
(四)求直线PA与BC所成的角;
(m)若M为线段BC上的动点,当BM:BC为何值时,平面PAC与平面PAM所成的锐二面角为45°.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,正四棱锥P-ABCD中,侧棱PA与底面ABCD所成的角的正切值为
6
2

(1)求侧面PAD与底面ABCD所成的二面角的大小;
(2)若E是PB的中点,求异面直线PD与AE所成角的正切值;
(3)问在棱AD上是否存在一点F,使EF⊥侧面PBC,若存在,试确定点F的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正三棱柱ABC-A1B1C1中,点D,D1分别为棱BC,B1C1的中点.
(1)求证:直线A1D1平面ADC1
(2)求证:平面ADC1⊥平面BCC1B1
(3)设底面边长为2,侧棱长为4,求二面角C1-AD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在平面直角坐标系中,A(-2,3),B(3,-2),沿x轴把平面直角坐标系折成120°的二面角后,则线段AB的长度为(  )
A.
2
B.2
11
C.3
2
D.4
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,M是A1B的中点.
(Ⅰ)在线段B1C1上是否存在一点N,使得MN⊥平面A1BC?若存在,找出点N的位置幷证明;若不存在,请说明理由;
(Ⅱ)求平面A1AB和平面A1BC所成角的大小.

查看答案和解析>>

同步练习册答案